1503240066

Reg.No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

DIGITAL ELECTRONICS

[Maximum marks: 100]

[Time: 3 Hours]

 $(5 \times 2 = 10)$

(7)

PART – A

Maximum marks: 10

I. (Answer *all* the questions in one or two sentences. Each question carries 2 marks)

- 1. Convert binary number 11001010 to octal number.
- 2. List any two alphanumeric codes.
- 3. Define fan out of a gate.
- 4. Define flip flops.
- 5. Define resolution and Accuracy of an ADC.

PART – B

Maximum marks: 30

II. (Answer any *five* of the following questions. Each question carries 6 marks)

- 1. State and explain De-Morgan's theorems.
- 2. Design and Implement a Half Subtractor.
- 3. Draw and explain TTL inverter.
- 4. Explain the working of a Johnson counter with diagram.
- 5. Draw the logic circuit of JK flip flop using NAND gates and write the truth table.
- 6. Explain flash type ADC.
- 7. Differentiate between synchronous and asynchronous counters. $(5 \times 6=30)$

PART – C

Maximum marks: 60

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT – I

III. (a) Perform the following operations.

(i)
$$101101+11001$$
 (ii) $11011011\div 101$ (8)

(b) Construct EX-NOR using NOR gates.

		OR		
IV.	(a)	Design a logic circuit by reducing the given expression.		
		$F(A,B,C,D) = \sum m(0,1,3,5,9,12,13) + d(2,4,8)$	(10)	
	(b)	List the advantages and disadvantages of K-map.	(5)	
UNIT – II				
V.	(a)	Explain the operation of 4 x 1 multiplexer with logic diagram.	(7)	
	(b)	Design a 4 bit gray to binary code converter.	(8)	
OR				
VI.	(a)	Design and Implement a Full Adder circuit.	(9)	
	(b)	Define the terms (i) Noise margin (ii) Noise immunity (iii) VOH	(6)	
UNIT - III				
VII.	(a)	Draw the diagram and explain the working of Ring counter with truth table.	(8)	
	(b)	Draw JK master slave f/f and list the methods for eliminating race around		
		condition.	(7)	
OR				
VIII.	(a)	Explain different types of shift registers.	(9)	
	(b)	Explain D and T flip flops.	(6)	
UNIT – IV				
IX.	(a)	Draw and explain 3 bit up down counter.	(8)	
	(b)	Discuss the working of 4 bit weighted resistor DAC with neat diagram.	(7)	
OR				
X.	(a)	Explain the Mod-10 asynchronous Counter using JK flip flop.	(9)	
	(b)	Explain counter type ADC.	(6)	

Page 2 of 2
