TED (21)	2002
(Revision	-2021)

2106220099A

Reg.No	•
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

MATHEMATICS II

[Maximum marks: 75] [Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

 $(9 \times 1 = 9 \text{ Marks})$ Module Cognitive level outcome Evaluate $\begin{vmatrix} sec\theta & tan\theta \\ tan\theta & sec\theta \end{vmatrix}$ Find A + B if A = $\begin{bmatrix} 0 & -2 \\ -2 & 1 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ U M1.012 M1.03 R Find the difference of the vectors $2\hat{i} + 3\hat{j} + 5\hat{k}$ and $\hat{i} + \hat{j} + \hat{k}$ 3 M2.02U Evaluate the length of the vector $2\hat{i} - \hat{j} + 2\hat{k}$ 4 M2.02 R Find $\int \sin x \, dx$ 5 M3.01R Find $\int (x^2 + 3) dx$ M3.01 R 6 Evaluate $\int_0^1 3x \ dx$ 7 M3.03IJ Find the order and degree of $x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + 1 = 0$ 8 M4.02 U 9 Solve the differential equation $\frac{dy}{dx} = x^2$ M4.02 Α

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$ Module Cognitive outcome level Solve for x if $\begin{vmatrix} x & 12 \\ 3 & x \end{vmatrix} = 0$ M1.01 U If $A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$ compute AA^T 2 M1.02 R Find the inverse of $\begin{bmatrix} 3 & 3 \\ -1 & 2 \end{bmatrix}$ 3 IJ M1.03Find $\bar{a} \times \bar{b}$ if $\bar{a} = 2\hat{i} + 2\hat{j} - \hat{k}$ and $\bar{b} = 6\hat{i} - 3\hat{j} + 2\hat{k}$ Find the work done by the force $\bar{F} = \hat{i} + 2\hat{j} + \hat{k}$ acting on a M2.02 IJ M2.03Α particle which is displaced from the point with position vector $2\hat{i} + \hat{j} + \hat{k}$ to the point with position vector $3\hat{i} + 2\hat{j} + 4\hat{k}$

6	Find the vector \overline{PQ} and length of \overline{PQ} if P is the point (1,2,3) and	M2.01	U
	Q is the point (3,5,6)		
7	Find $\int \cos^2 x dx$	M3.02	U
8	Find $\int x \sin x dx$	M3.02	U
9	Evaluate $\int_0^1 \frac{1}{1+x^2} dx$	M3.03	R
10	Solve the differential equation $\frac{dy}{dx} = e^{3x+y}$	M4.02	A

PART C
Answer all questions. Each question carries seven marks

 $\begin{array}{|c|c|c|c|c|} \hline (6 \times 7 = 42 \text{ Marks}) \\ \hline \text{Module} & \text{Cognitive} \\ \hline \end{array}$

		Module outcome	Cognitive level
III	Solve the following system of equations by Cramer's rule	M1.02	U
	x + 2y - z = -3, $3x + y + z = 4$, $x - y + 2z = 6$ (7 marks)		
IV	OR (a) Find a, b, c if $\begin{bmatrix} a & a+b \\ 2a-c & b+c \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 7 & -2 \end{bmatrix}$ (4 marks)	M1.03	R
	(b) Find $A + A^{T}$ if $A = \begin{bmatrix} 1 & -1 \\ 2 & -3 \end{bmatrix}$ (3 marks)	M1.03	U
V	(a) Find the dot product of the vectors $2\hat{i} + \hat{j} + \hat{k}$ and	M2.02	R
	$-2\hat{i} + 2\hat{j} - 3\hat{k} $ (2 marks)		
	(b) A force $\overline{F} = 4\hat{i} - 3\hat{k}$ passes through the point A whose position vector is $2\hat{i} - 2\hat{j} + 5\hat{k}$. Find the moment of the force about the point B whose position vector is $\hat{i} - 3\hat{j} + \hat{k}$ (5 marks)	M2.03	A
	OR		
VI	(a) Find a unit vector in the direction of $\bar{a} + \bar{b}$ where $\bar{a} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\bar{b} = \hat{i} - \hat{j} - 2\hat{k}$ (4 marks)	M2.02	R
	(b) Find $(\bar{a} + \bar{b})$. $(\bar{a} - \bar{b})$ if $\bar{a} = \hat{i} + \hat{j} + \hat{k}$ and $\bar{b} = 2\hat{i} - \hat{j} - \hat{k}$ (3 marks)	M2.02	U
VII	(a) Find the value of 'p' if the vectors $2\hat{i} - \hat{j} - \hat{k}$ and $4\hat{i} - p\hat{j} - \hat{k}$	M2.02	U
	$2\hat{k}$ are perpendicular. (3 marks)		
	(b) Find a unit vector perpendicular to both the vectors $\bar{a} = \hat{i} - \hat{j} + 2\hat{k}$ and $\bar{b} = -\hat{i} + \hat{j} - \hat{k}$ (4 marks)	M2.02	U
	OR		

VIII	(a) Find $2\overline{a}$. $3\overline{b}$ if $\overline{a} = \hat{i} + \hat{j} + \hat{k}$ and $\overline{b} = 2\hat{i} - \hat{j} - \hat{k}$. (3 max	rks) M2.03	R
	(b) Find the area of the triangle formed by the points A, I $\overline{AB} = \hat{i} + 2 \hat{j} + 3\hat{k} \text{ and } \overline{BC} = -3\hat{i} - 2\hat{j} + \hat{k}. $ (4 mark	1 M2.02	A
IX	(a) Find $\int \frac{1-\sin x}{x+\cos x} dx$. (4 ma)	rks) M3.02	U
	(b) Evaluate $\int_0^{\pi/2} \sin 2x \ dx$. (3 max)	rks) M3.03	U
	OR		
X	(a) Find $\int x^2 \log x dx$. (3 ma)	rks) M3.02	U
	(b) Prove that $\int \sec x dx = \log(\sec x + \tan x) + c$. (4 mar)	ks) M3.02	R
XI	(a) Find $\int \frac{3\cos x + 4}{\sin^2 x} dx$. (4 max)	rks) M3.02	U
	(b) Evaluate $\int_0^{\pi/2} \sin x dx$. (3 mag)	rks) M3.03	U
	OR		
XII	(a) Find $\int \sin^3 x \cos x dx$. (4 mar	ks) M3.02	R
	(b) Evaluate $\int_{1}^{2} logx dx$. (3 ma)	rks) M3.03	U
XIII	Find the area bounded by the parabola $y = x^2 - x - 2$ and the	M4.01	A
	X - axis. (7 ma	rks)	
	OP		
VIII	OR	N// 02	
XIV	Solve $\frac{dy}{dx} + y \tan x = \cos^2 x$. (7 mark	(s) M4.02	A
