TED (21) 4133 (Revision - 2021)

2103230213

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

DATA STRUCTURES

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark. $(0 - 1 - 0 M_{exclus})$

		$(9 \times 1 = 9 \text{ Marks})$	
		Module	Cognitive
		outcome	level
1	Define Data Structures.	M1.01	R
2	Name the different data structures that use the principles of:-	M1.01	R
	(i) LIFO (ii) FIFO		
3	Draw the node structure of Doubly Linked List.	M2.03	А
4	Define Linked List.	M2.01	U
5	A is a tree in which every node other than the leaves has	M3.01	U
	two children.		
6	In a tree data structure, the total number of edges from leaf node to a	M3.01	U
	particular node in the longest path is called of that node.		
7	Define graph.	M4.01	U
8	Define Acyclic Graph.	M4.01	U
9	In a queue deletion is done from the end.	M1.04	U

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

		$(8 \times 3 = 24 \text{ Marks})$	
		Module	Cognitive
		outcome	level
1	Explain about Dequeue.	M1.05	U
2	Describe Infix, Prefix, Postfix Expressions with examples.	M1.03	U
3	List different applications of Stack.	M1.03	R
4	Explain how an element can be deleted from the beginning of a	M2.02	U
	singly linked list.		
5	Explain different types of Linked List.	M2.03	U
6	Write a note about the perfect binary tree.	M3.01	U
7	Draw Binary Search Tree for the elements	M3.04	А
	50, 20, 100, 30, 200, 10, 150.		
8	Illustrate the array representation of Binary Tree with suitable	M3.02	U
	example.		
9	List two methods for representing Graphs. Give examples for both.	M4.02	R
10	Explain (i) Weighted Graph (ii) Directed Graph	M4.01	U

PART C Answer all questions. Each question carries seven marks.

	· ·	(6 x 7 = 42 Marks)	
		Module	Cognitive
TTT		outcome	level
111	Explain circular Queue and priority queue.	M1.05	K
	OR	241.04	
IV	Explain implementation of Queue using Array.	M1.04	U
V	Explain Insertion operation in Linked List.	M2.02	R
	OR		
VI	Explain implementation of Stack using Linked List.	M2.04	U
VII	Draw a complete Binary tree and explain the following.	M3.01	U
	(i) Degree of a node (ii) Level of a node		
	(iii) Leaf node (iv) Sibling of a node		
	OR		
VIII	Explain Preorder and Inorder Tree traversal methods.	M3.03	R
IX	Explain Depth First Search Graph traversal Algorithm.	M4.03	U
	OR		
Х	Explain Warshall's Shortest Path Algorithm.	M4.04	R
XI	Evaluate the following Postfix expression using stack and give the	M1.03	А
	result.		
	(a) $A B + D E / - Where A=6, B=2, D=8 and E=4.$		
	(b) $A B C D - + * Where A=4 B=2 C=3 D=5$		
	OR		
XII	Explain implementation of POP and PUSH operations of stack using	M1.02	U
	array.		-
XIII	Draw the following graphs, with 4 vertices.	M4.01	А
	(i) Complete Graph		
	(i) Undirected Granh		
ΧIV	Show the preorder postorder traversals on the following RST	M4 03	۸
ΛΙν	Show the preorder, postorder traversals on the following BST.	1014.03	A
	(30)		
	(20) (40)		
	(15) (25) (35) (50)		