TED (21)5	5022
(Revision	- 2021)

2109230035

Reg. No	•••	••	• •	٠.	•	 •	٠.	•	•	•	• •	•	•	•
Signature						 				_				

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2025

REFRIGERATION AND AIR-CONDITIONING

[Maximum Marks: 75] [Time: 3 Hours]

PART-A

I. Answer 'all' the following questions in one word or one sentence. Each question carries 'one' mark.

 $(9 \times 1 = 9 \text{ Marks})$

		Module Outcome	Cognitive level
1.	Air refrigerator cycle is used in	M1.02	R
2.	Define the term Refrigeration.	M1.01	R
3.	The value of COP in vapour compression cycle is usually	M2.01	R
4.	In a refrigeration cycle, the flow of refrigerant is controlled by	M2.02	R
5.	The pressure at the outlet of a refrigerant compressor is called	M3.01	R
6.	The forced convection air cooled condensers are used in	M3.02	R
7.	During the process of sensible heating of air, the wet-bulb temperature would be:	M4.01	R
8.	The vertical and uniformly spaced lines on a psychrometric chart indicate	M4.02	R
9.	In winter air conditioning, the air is	M4.05	R

PART-B

II. Answer any 'eight' questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks)
Module Outcome Cognitive level

1. What are the merits of air refrigeration system? M1.03R 2. Explain primary refrigerants with examples. M2.04 U Explain the various methods to improve the COP of a vapour 3. M2.02U compression system. What are the various refrigerant leakage detection systems? M2.02R 4. 5. Discuss various applications of cryogenics. M3.06 U Explain the classification of compressors in refrigeration system. M3.01IJ 6. M4.01 Define: R 7. Dry bulb temperature i) Wet bulb temperature ii) Dew point temperature iii) Explain Dalton's law of partial pressures. M4.02U 8. What is the concept of HVAC? M4.07 R What are the factors affecting human comfort? M4.06 R

 $\label{eq:PART-C} \textbf{Answer 'all' questions from the following. Each question carries 's even' marks.}$

 $(6 \times 7 = 42 \text{ Marks})$

		Module Outcome	Cognitive level
III.	Explain the working of a Reversed Carnot cycle of refrigeration with	M1.02	U
	P-V and T- S Diagrams.		
	OR		
IV.	1.5kW per tonne of refrigeration is required to maintain the	M1.04	U
	temperature of -40°C in the refrigerator. If the refrigeration cycle		
	works on Carnot cycle, determine the COP of the cycle.		
V.	With a neat sketch, explain the working principle of vapour	M2.02	U
	compression refrigeration system.		
	OR		
VI.	Explain the desirable properties of refrigerants.	M2.04	U
VII.	Explain the advantages and applications of cryogenic refrigeration.	M3.06	U
	OR		
VIII.	Describe thermostatic expansion valve with neat sketch.	M3.04	U
IX.	Explain the working of water-cooled condenser with neat sketch.	M3.02	U
	OR		
X.	Explain the working of rotary compressor with neat sketch.	M3.01	U
XI.	Compare winter air conditioning system with summer air	M4.05	U
	conditioning system.		
	OR		
XII.	The temperature of air entering an adiabatic saturator is 42°C and that	M4.01	A
	of the air leaving is 30°C. Compute the humidity ratio and relative		
	humidity of the entering air.		
XIII.	Explain year-round air-conditioning system with sketch.	M4.05	U
	OR		
XIV.	Moist air, saturated at 10°C, flows over a heating coil at the rate of	M4.02	A
	5000 m ³ /h. Air leaves the coil at 40°C. Plot the process on a		
	psychrometric chart and determine the following:		
	(a) WBT of air.		
	(b) The sensible heat transferred in kW.		
