2102250034

Reg.No	••••	•••	•••	•••	•••	•••	•••	•••	•••	•
Signature			•••	•••		•••		•••	•••	•

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL – 2025

THERMAL ENGINEERING

[Maximum marks: 75]

[Time: 3 Hours]

[Instructions: 1. Use of steam table and Mollier chart is allowed. 2. Scientific calculator (up to 100Ms) is allowed.]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		(9 x 1 = 9 Marks)		
		Module	Cognitive	
		outcome	level	
1	Name the thermodynamic system with exchange of energy and	M1.02	R	
	matter with the surrounding.			
2	Define the term extensive property with an example.	M1.02	R	
3	Write the expression to find the air standard efficiency of Otto	M2.01	R	
	1			
	cycle.			
4	Define the term brake power.	M2.05	R	
5	The opening and closing of valves in an IC engine in relation to	M2.04	U	
	the movement of piston is called			
6	The heating of dry and saturated steam above the saturation	M3 02	R	
Ŭ	The neutring of any and subtrated steam doore the subtration	1113.02	IX.	
	temperature is known as			
		244.04		
7	The SI unit of coefficient of thermal conductivity is	M4.01	R	
8	Write the mathematical expression for Stefan Boltzmann law	M4 03	P	
0		1014.03	К	
9	Define the term grey body.	M4.03	R	
_				

PART B II. Answer any eight questions from the following. Each question carries 3 marks.

		$(8 \times 3 = 2)$	24 Marks)
		Module	Cognitive
		outcome	level
1	Derive Mayors relation from first law of thermodynamics.	M1.05	А
2	State and explain Joule's law.	M1.05	R
3	Derive the expression for air standard efficiency for Otto cycle.	M2.01	А
4	Compare 2 stroke petrol engine with 4 stroke petrol engine.	M2.02	R
5	Write the principle of Heat balance test.	M2.06	R

6	An internal combustion engine take in a mixture of fuel and air at	M2.03	А
	27 [°] C and highest temperature after combustion is 377 [°] C. Calculate		
	the Carnot efficiency of an engine working between these two		
	limits of temperature.		
7	A superheated steam at 48.263 bar and 359.99°C is expanded at	M3.04	U
	constant entropy to 9.65 bar. Determine the change in enthalpy.		
8	Define the following terms	M4.03	R
	(a) Absorptivity (b) Emissivity (c) Reflectivity		
9	Compare free with forced convention heat transfer.	M4.04	R
10	Explain the working of counter flow heat exchangers.	M4.05	U

PART C Answer all questions. Each question carries seven marks

		$(6 \times 7 = 4)$	2 Marks)
		Module outcome	Cognitive level
III	Explain the following terms in the context of thermodynamics.	M1.02	R
	(a) System (b) Surroundings (c) Universe		
	(d) State (e) Properties.		
	OR		
IV	What is adiabatic process? Derive an expression for the work	M1.04	U
	done during adiabatic expansion for an ideal gas.		
V	A quantity of gas occupying 0.1m ³ at 0.8 MPa is heated at	M1.05	U
	constant pressure until volume becomes 0.2m ³ . The initial		
	temperature is 197^{0} C and $C_{p} = 1.005$ kJ/kg.K and		
	$C_v = 0.718 \text{ kJ/kg.K.}$ Find the change in internal energy.		
	OR		
VI	Show that, for a constant volume heating, the supplied to the gas	M1.05	U
	is equal to change of internal energy.		
VII	A Carnot engine is operated between two reservoirs at	M2.03	U
	temperatures of 377^{0} C and 37^{0} C. If the engine receivers 290 kJ		
	of heat form the source in each cycle, calculate.		
	(i) Amount of heat rejected to the sink in each cycle.		
	(ii) Efficiency of the engine, and		
	(iii) Work done by the engine in each cycle.		

	OR		
VIII	Explain Morse test for determining frictional power of engine.	M2.06	R
IX	Determine the following properties of liquid & steam at pressure	M3.04	U
	of 10 bar as given below.		
	(i) Saturation temperature		
	(ii) Specific enthalpy of liquid.		
	(iii) Specific enthalpy of dry saturated steam.		
	OR		
Х	Briefly Explain the working of Reaction steam turbine.	M3.06	U
XI	What are boiler mountings? List out at least 4 boiler mountings	M3.05	R
	and its functions.		
	OR		
XII	Explain about the advantages of water tube boilers over fire tube	M3.05	U
	boiler.		
XIII	With suitable sketches explain the working of Shell and Tube	M4.05	U
	heat exchanger.		
	OR		
XIV	Explain the working of any two rotary air compressors.	M4.07	U
