1503240211

Reg.No	•••
Signature	•••

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2025

CONTROL ENGINEERING

[Maximum marks: 100]

[Time: 3 Hours]

PART – A Maximum marks: 10

I. (Answer *all* the questions in one or two sentences. Each question carries 2 marks)

- 1. Define Laplace transform.
- 2. Define transfer function of a control system.
- 3. Define the characteristic equation of a control system.
- 4. State the definition of absolute stability of a system.
- 5. Write the Laplace transform of 'At'.

(5 x 2 = 10)

PART – B

Maximum marks: 30

II. (Answer any *five* of the following questions. Each question carries **6** marks)

- 1. Compare open loop and closed loop systems.
- 2. Describe the transfer function of mechanical translational system.
- 3. Describe unit step and ramp standard signals using neat figures.
- 4. Explain the three conditions of stability, marginal stability and instability in the first column of Routh Array.
- 5. Explain the Laplace transform of sinat and cosat.
- 6. Describe the impulse response of first order system.
- 7. List any four advantages of frequency response analysis. $(5 \times 6= 30)$

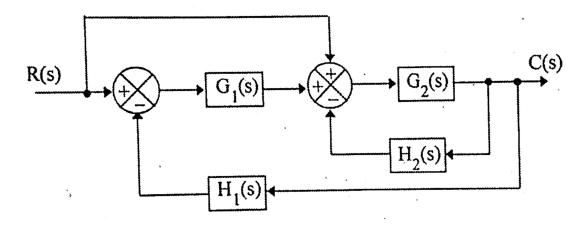
PART – C

Maximum marks: 60

(Answer one full question from each unit. Each full question carries 15 marks)

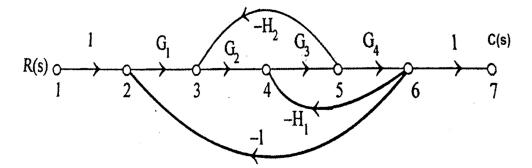
UNIT – I

- III. (a) State and prove the final value theorem of Laplace transform. (7)
 - (b) Obtain the inverse Laplace transform of the following transfer function, T(s)=5/s(s+2)(s+3)(8)


OR

- **IV**. (a) Explain Linear time invariant systems with an example. (6)
 - (b) Obtain the time solution of the differential equation

$$\frac{d^2y}{dt^2} + 5\frac{dy}{dt} + 6y = 12e^t.$$
 Given that y(0+)=0 and y'(0+)=6 (9)


UNIT – II

- V. (a) Derive the transfer function of series RLC circuit. (7)
 - (b) Obtain the overall transfer function C(s)/R(s) for the block diagram. (8)

OR

- VI. (a) Explain poles and zeros of transfer function with an example. (6)
 - (b) Find the overall gain C(s)/R(s) for the signal flow graph given. (9)

UNIT - III

- VII. (a) Describe the step response of a first order system with a neat figure. (7)
 - (b) Derive the expression for static error in terms of Kp, Kv, Ka for a type 1 system subjected to unit step and ramp inputs.

OR

VIII	. (a)	Explain static position and static velocity error coefficient.	(6)	
	(b)	Obtain the step response of an underdamped second order system.	(9)	
UNIT – IV				
IX.	(a)	Explain the steps for constructing root locus.	(8)	
	(b)	With necessary steps draw the bode plot of the function		
		G(s) = 1/s	(7)	
OR				
Х.	(a)	The characteristic polynomial of a system is given by		
		$s^5 + s^4 + 2s^3 + 2s^2 + 11s + 10 = 0$. Determine the location of roots on the		
		s-plane and hence the stability of the system.	(8)	
	(b)	Explain Gain margin and Phase margin.	(7)	
