2110220234A

Reg.No	•••	•••	 •		•
Signature		•	 •	•••	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2024

ELECTRONIC CIRCUITS

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark.

		(9 x 1 = 9 Marks)	
		Module	Cognitive
		outcome	level
1	A transistor is operating in active region. What will be the biasing	M1.03	R
	at emitter-base and collector-base junctions?		
2	When a transistor is said to be in a quiescent state?	M1.01	R
3	Write the relation between Resonance frequency, Q and Bandwidth.	M2.01	R
4	What is collector efficiency of the power amplifier?	M2.03	R
5	Write the expression for gain of a positive feedback amplifier.	M3.01	R
6	What is piezo electric effect?	M3.05	R
7	Which operating regions of a transistor is used, to work as a switch?	M4.01	R
8	Which multivibrator is known as a free running oscillator?	M4.02	R
9	Name the circuit which converts an irregular waveform to a square	M4.04	R
	wave.		

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

		(8 x 3 = 24 Marks)		
		Module	Cognitive	
		outcome	level	
1	A silicon transistor is biased with fixed bias method. If β =100,	M1.01	А	
	$V_{BE}=0.7V$, zero signal collector current Ic = 1 mA and Vcc = 6V,			
	What is the value of the base resistor R _B ?			
2	A multistage amplifier consists of three stages. The voltage gains of	M1.04	А	
	the stages are 40, 60 and 80. Calculate the overall voltage gain in			
	dB.			
3	What is resonant frequency? Derive the expression for resonant	M2.01	R	
	frequency of a series resonant circuit.			
4	Write the importance of impedance matching in power amplifier.	M2.03	U	
	Suggest a method for impedance matching.			
5	Why Class B power amplifier is more efficient than Class A?	M2.04	U	
6	Write the effect of negative feedback on an amplifier.	M3.03	U	
7	Calculate the resonant frequency of a Wien Bridge oscillator when	M3.04	А	
	$R = 100 \text{ k} \Omega$ and $C = 500 \text{pF}$.			

8	Draw the circuit of a Hartley oscillator.	M3.05	U
9	For an un-symmetric astable multivibrator $R1 = 100 \text{ k}\Omega$,	M4.02	А
	$R2 = 100 \text{ k}\Omega$, $C1 = 0.02 \mu\text{F}$, $C2 = 0.01 \mu\text{F}$. Find the frequency of		
	oscillation.		
10	For the UJT relaxation oscillator circuit, resistor R=10K, and η =0.5.	M4.05	А
	If the required oscillating frequency is 1.5 kHz, find the value of C.		

PART C Answer all questions. Each question carries seven marks. (6 x 7 = 42 Marks)

		(6 x 7 = 42 Marks)		
		Module	Cognitive	
		outcome	level	
III	Draw and explain the operation of an Emitter follower Circuit.	M1.03	U	
	Mention any of its important feature.			
	OR			
IV	Explain the operation of transformer coupled amplifier with circuit	M1.04	U	
	diagram.			
V	Explain the series and parallel resonance circuit with diagram. Find	M2.01	А	
	out the resonant frequency of a parallel resonant circuit formed by a			
	$100\mu H$ inductor and a $2\mu F$ capacitor.			
	OR			
VI	List and explain different classes of power amplifiers.	M2.04	R	
VII	Differentiate between voltage amplifier and power amplifier.	M2.03	R	
	OR			
VIII	Explain the operation of Class B Push Pull amplifier with circuit.	M2.04	U	
IX	A phase shift oscillator uses 5 pF capacitors. Find the value of R to	M3.04	А	
	produce a frequency of 800 kHz. Draw the circuit diagram and			
	mark the feedback network.			
	OR			
Х	The tuned collector oscillator circuit used in the local oscillator of a	M3.04	А	
	radio receiver makes use of an LC tuned circuit with $L1 = 58.6 \mu H$			
	and $C1 = 300 \text{ pF}$. Calculate the frequency of oscillation.			
XI	Explain working of Colpitts oscillator with circuit diagram.	M3.05	U	
	OR			
XII	What is meant by feedback? Compare positive and negative	M3.01	R	
	feedback.			
XIII	Draw a Schmitt trigger circuit and show its input and output	M4.04	U	
	waveforms.			
	OR			
XIV	Explain the working of UJT Relaxation oscillator with circuit and	M4.05	U	
	waveforms.			
