TED (15/19) – 4133 (Revision – 2015/19)

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER – 2024

DATA STRUCTURES

[Maximum Marks : 100]

[Time : 3 hours]

PART – A

(Maximum Marks : 10)

I. Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. List any two non-linear data structures.
- 2. Define time complexity of an algorithm.
- 3. Draw block diagram notation of a singly linked list node.
- 4. Define a binary tree.
- 5. Define a complete graph.

PART – B

(Maximum Marks : 30)

- II. Answer any five of the following questions. Each question carries 6 marks.
 - 1. Define data structure and explain the different operations of data structure.
 - 2. How to evaluate the postfix expressions AB*C+D- to find the result where A = 5, B = 4, C = 6 and D = 7?
 - 3. Compare array and linked list.
 - 4. Draw a binary tree and perform different tree traversals.
 - 5. Explain linear search.
 - 6. Explain adjacency matrix representations of a graph with example.
 - 7. Write an algorithm for pop operation in a linked stack.

(5x6=30)

(5x2=10)

PART – C

(Maximum Marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks)

(a) Explain the algorithm of infix to postfix conversion using stack ADT.

III.

UNIT – I

(10)

	(b) Explain about priority queue and deque.	(5)
	OR	
IV.	(a) Describe queue ADT with insert () and delete () operations.	(9)
	(b) Write short note Circular queue.	(6)
	UNIT – II	
V.	(a) Explain linked list ADT with the algorithms to insert in last position and display linked list.	(10)
	(b) Explain doubly linked list ADT.	(5)
	OR	
VI.	(a) Write an algorithm to search a number in a linked list.	(7)
	(b) Explain queue implementation using linked list.	(8)
	UNIT –III	
VII.	Explain the operations of insertion and traversals in a binary search tree with algorith	ıms. (15)
	OR	
VIII.	(a) Explain expression tree with an example.	(8)
	(b) Explain threaded binary tree.	(7)
	UNIT – IV	
IX.	(a) Explain BFS in a graph with algorithm and example.	(9)
	(b) Explain bubble sort algorithm with an example.	(6)
	OR	
X.	(a) Discuss about the all pair shortest path algorithm.	(9)
	(b) Explain quick sort algorithm.	(6)
