TED (15/19) - 3212 (REVISION-2015/19)

1503240113

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2024

DIGITAL CIRCUITS

(Maximum Marks:100)

(Time: 3 Hours)

PART - A

(Maximum Marks : 10)

Marks

I. Answer **all** the questions in one or two sentences. Each question carries 2 marks.

- 1. List the four types of number system.
- 2. Draw the symbol of NOR gate with its truth table.

3. Define Fan-out & Fan-In.

- 4. Define asynchronous counter.
- 5. Write the name of any two A/D ICs.

 $(5 \times 2 = 10)$

PART - B

(Maximum Marks: 30)

- II Answer *any five* questions from the following. Each question carries 6 marks.
 - 1. Minimize the following function using K map $F(a,b,c)=\sum m(1,2,5,6)$
 - 2. Explain the procedure to convert octal to decimal number system and convert the octal code $(140)_8$ into decimal.
 - 3. With neat diagram describe the operation of 4 to 1 Multiplexer.
 - 4. Draw the circuit and explain the operation of TTL NAND gate.
 - 5. Draw the circuit diagram of asynchronous decade counter and give its truth table.
 - 6. List any six applications of flip flop.
 - 7. Compare ROM and RAM.

 $(5 \times 6 = 30)$

(4)

PART – C

(Maximum Marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

III (a) Write a short notes of Excess 3 code and Gray code.

(b) Simplify the expression $\overline{\overline{A + B\overline{C}} + D.(\overline{E + \overline{F}})}$ using De-Morgan's theorem (7)

(c) State associate law of addition and associate law of multiplication. (4)

OR

IV	(a) Implement AND, OR. a	and EX-OR gates using NAND gates only.	(6)
	(b) Substract using 2's complement method.		
	(i) $(1111)_2 - (1010)_2$	(ii) $(1000)_2 - (1010)_2$	(4)

(c) Simplify the logic expression [AB'(C+BD)+A'B']C using linear algebra. (5)

UNIT – II

V	(a) Implement the Boolean function $F = (\overline{A} + B + C).(A+B).D$ using only	
	NOR gate.	(7)
	(b) Explain the operation of 4 bit Look ahead carry adder with block diagram.	(8)
	OR	
VI	(a) Describe the operation of decimal to BCD encoder.	(8)
	(b) Describe the operation of 4 bit binary parallel adder.	(7)

UNIT – III

	OR	
	using JK flip flop.	(8)
	(b) Draw the logic diagram and explain the mod-12 asynchronous counter	
VII	(a) Explain the operation of Parallel-in Serial-out shift register with neat sketch.	(7)

VIII (a) Draw and explain the operation of JK flip flop with its truth table.		(7)
	(b) Describe the operation of up/down asynchronous counter.	(8)

UNIT – IV

IX	(a) Explain the operation of binary weighted D/A converter.	
	(b) Explain the operation of successive approximation type A/D converter.	(8)
	OR	
Х	(a) Briefly explain sensitivity and resolution of a digital meter.	(6)
	(b) Explain the operation of R-2R ladder type DAC converter with neat sketch.	(9)
