TED (15/19) 2002 (Revision-2015/19)

N24 - 1169

Reg.No	 	•••	•••	••	•••	•••
Signature	 		•••	•••		•••

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2024

ENGINEERING MATHEMATICS - II

[Maximum marks: 100]

[Time: 3 Hours]

PART – A Maximum marks: 10

I. (Answer *all* the questions. Each question carries 2 marks)

- 1. Find the unit vector in the direction of 2i + j + 2k.
- 2. Solve for x if $\begin{vmatrix} x & 16 \\ 4 & x \end{vmatrix} = 0$. 3. If $A = \begin{bmatrix} 1 & 2 \\ -2 & 0 \end{bmatrix}$ and $B = \begin{bmatrix} 3 & 0 \\ 5 & -7 \end{bmatrix}$. Find 5A - B. 4. Evaluate $\int x^2(x+1)dx$.
- 5. Solve $\frac{dy}{dx} = 2y$. (5 x 2 = 10)

PART – B Maximum marks: 30

- **II.** (Answer any *five* of the following questions. Each question carries **6** marks)
 - 1. Find the unit vector perpendicular to the vectors $\vec{a} = i + j + k$ and $\vec{b} = i + 3j k$
 - 2. Find the term independent of x in the expansion of $\left(x^3 + \frac{3}{x^2}\right)^{15}$
 - 3. Find *A*, *B* if *A* + *B* = $\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix}$, *A B* = $\begin{bmatrix} 5 & 4 & 3 \\ 2 & 1 & 0 \end{bmatrix}$
 - 4. Solve the system x + y + z = 1, 2x + 2y + 3z = 6, x + 4y + 9z = 3 by finding the inverse of the coefficient matrix.
 - 5. Evaluate $\int (x + \frac{1}{x})^2 dx$
 - 6. Evaluate $\int_0^{\pi} \cos^2 x dx$

7. Solve
$$(1 + x^2)\frac{dy}{dx} + y = e^{tan^{-1}(x)}$$
 (5 x 6= 30)

PART – C

Maximum marks: 60

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT – I

by 2i - 2j + 5k. Find the moment of the force about the point *B* whose position vector is i - 3j + k (5)

(c) Find the 7th term in the expansion of
$$\left(x^2 + \frac{2}{x}\right)^{10}$$
 (5)

OR

IV. (a) If
$$\vec{a} = 5i - j - 3k$$
, $\vec{b} = i + 3j - 5k$, show that the vectors $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$ are perpendicular to each other. (5)

(b) Find the area of a triangle whose vertices are represented by vectors A(i - k)
 B(2i + j + 5k) and C(j + 2k).
 (5)

(c) Find the middle term of
$$\left(2x + \frac{3}{x}\right)^9$$
 (5)

UNIT - II

V. (a) Solve for x if
$$\begin{vmatrix} 2 & 1 & x \\ 3 & -1 & 2 \\ 1 & 1 & 6 \end{vmatrix} = \begin{vmatrix} 4 & x \\ 3 & 2 \end{vmatrix}$$
 (5)

(b) If
$$A = \begin{bmatrix} 5 & 3 \\ 2 & 2 \end{bmatrix}$$
, $B = \begin{bmatrix} 7 & 5 \\ 4 & 3 \end{bmatrix}$. Show that $(AB)^{-1} = B^{-1}A^{-1}$ (5)

(c) Solve the system x + 2y - z = -3, 3x + y + z = 4, x - y + 2z = 6 by Cramer's rule. (5)

OR

VI. (a) If
$$A = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $B = \begin{bmatrix} 1 & 4 & -1 \end{bmatrix}$. Find AB and BA . (5)

(b) If A is a square matrix, prove that $(A + A^T)$ is symmetric and $(A - A^T)$ is skew symmetric.

(c) Find the inverse of
$$\begin{bmatrix} 3 & 1 & -1 \\ -1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$
 (5)

(5)

UNIT - III

VII. (a) Evaluate
$$\int cosecx \, dx$$
 (5)
(b) Find $\int_0^{\pi} \frac{1}{1+sinx} dx$ (5)

(c) Find
$$\int x \sin x \, dx$$
 (5)

OR

VIII. (a) Find
$$\int \frac{1+\cos x}{(x+\sin x)^2} dx$$
 (5)

(b) Find
$$\int x^2 e^{-x} dx$$
 (5)

(c) Find
$$\int_{1}^{e} \frac{\sin(\log x)}{x} dx$$
 (5)

UNIT – IV

IX. (a) Find the volume of the solid generated by the rotation of the area bounded by the curve y = 2cosx, the x – axis and the lines x = 0, $x = \frac{\pi}{4}$ about the x – axis. (5)

(b) Solve
$$\frac{dy}{dx} + ycotx = 2cosx$$
 (5)

(c) Solve
$$3e^x tanydx + (1 - e^x)sec^2ydy = 0$$
 (5)

OR

Х.	(a) Find the area bounded by the curve $x = 4 - y^2$ about the y – axis	(5)
	(b) Solve $dy = e^{3x+y}dx$	(5)
	day	

(c) Solve
$$x \frac{dy}{dx} + 3y = 5x^2$$
 (5)