TED (15/19) - 4024 (REVISION-2015/19)

1510230183

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

THERMAL ENGINEERING

[Note – Use of steam tables and Mollier chart is Permitted]

(Maximum Marks:100)

PART - A

(Maximum Mark: 10)

Marks

(Time: 3 Hours)

I. Answer **all** the questions in one or two sentences. Each question carries 2 marks.

- 1. Define a closed system with an example.
- 2. Give any two examples of intrinsic property
- 3. Define compression ratio.
- 4. Define Brake power.
- 5. List any two types of heat exchangers.

PART - B

(Maximum Mark: 30)

- II Answer *any five* questions from the following. Each question carries 6 marks.
 - 1. State Zeroth law and the first law of thermodynamics.
 - 2. Define Boyle's law and Charle's law of gases.
 - 3. Draw the valve timing diagram of a four-stroke diesel engine.
 - 4. Compare the characteristics of petrol engines and diesel engines.
 - 5. Explain the heat balance sheet.
 - 6. Define mechanical efficiency, brake thermal efficiency, and indicated thermal efficiency of IC engines.
 - 7. List the applications of compressed air.

PART – C

(Maximum Mark: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

III a) Explain specific heats of gases and the relation between them. (7)

b) A vessel of 0.03m^3 capacity contains gas at 350 KN/m² pressure and 35°C temperature. Determine the mass of the gas in the vessel. If the pressure is increased to $1.05 \times 10^6 \text{N/m}^2$ keeping the volume constant, find the temperature of the gas. Take R = 290J/Kg K for the gas. (8)

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

OR

IV	a) Derive an expression for work done in an isothermal process.	(7)
	b) The density of a gas at 0°C temperature and 1.013 bar pressure is 1.38	4 kg/m^3 .
	Calculate Gas constant and the molecular weight of the gas. Find the sp	pecific
	volume of the gas at 13 bar and 35°C.	(8)

UNIT – II

V	a) State the assumptions made in air standard cycles.	(7)
	b) Differentiate between two-stroke and four-stroke engines.	(8)
	OR	
VI	a) Explain the Carnot cycle with the help of a P-V diagram.	(7)
	b) Explain the working of a two-stroke petrol engine with the help of a figure.	(8)

UNIT – III

VII	a) Explain the Morse test for determining the Indicated power of multicylind	er				
	Engines.	(7)				
	b) A four-cylinder four-stroke engine runs on 1300 rpm. The stroke is 0.12m a the bore diameter is 0.1m. The mean effective pressure on each cylinder is a	and 500				
	KPa. Mechanical Efficiency is 60 percent. Calculate Brake power and India	ated				
	power.	(8)				
	OR					
VIII	a) Explain the working of a double-acting steam engine.	(7)				
	b) List the types of steam nozzles, their functions, and applications.	(8)				
	UNIT – IV					
IX	a) Explain the concept of a black body and state Stefan Boltzmann's law.	(7)				
	b) Explain the working of a single-stage reciprocating air compressor with the help of figure.	(8)				
	OR					
Х	a) Explain the different modes of heat transfer with suitable examples.	(7)				
	b) List the advantages and disadvantages of multistage compression.	(8)				