Reg.No
Signature.

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

DATA STRUCTURES

[Maximum Marks:75]
[Time: 3 Hours]
PART - A
I. Answer all the following questions in one word or one sentence. Each question carries 'one' marks.
($9 \times 1=9$ Marks)
Module Outcome Cognitive level

1	Name any two basic operations on data structures.	M 1.03	R
2	In a queue, insertion is done at the end called $\ldots \ldots .$.	M 1.04	R
3	In a circular linked list, next pointer of the last node points to $\ldots .$.	M 2.03	R
4	List any one disadvantage of singly linked list	M 2.01	R
5	Define binary search tree.	M 3.03	R
6	Number of edges from a node to a leaf in the longest path is called $\ldots \ldots$. of that node.	M 3.03	R
7	Define degree of a vertex in a graph.	M 4.01	R
8	A graph in which all vertices are of the same degree is called $\ldots . .$.	M 4.01	R
9	Define path length.	M 4.01	R

PART - B
II. Answer any eight questions from the following. Each question carries 'Three' marks.
($\mathbf{8 \times 3} \mathbf{3}=\mathbf{2 4}$ Marks)

Module Outcome Cognitive level			
1	List the characteristics of linear and non-linear data structures.	M1.01	R
2	Convert to prefix form: (A+B)*C/(D-E).	M1.03	A
3	Write the functions to check whether on a queue implemented using array is i) Full or not \quad ii) Empty or not	M1.04	R
4	Develop an algorithm for deleting a node from beginning of a singly linked list.	M 2.02	U

5	Describe doubly linked list.	M 2.03	R
6	Explain how a stack can be implemented using linked list.	M 2.04	U
7	Write the recursive pre-order traversal of a tree.	M 3.03	R
8	Define the terms: (i) Sibling (ii) Height of tree	M 3.01	R
9	Write the adjacency list for the graph given below:	M 4.02	A

PART - C
Answer all the questions from the following. Each question carries 'seven' marks.
(6 x $7=42$ Marks)

Module Outcome			
III. IV.	Explain how a queue can be implemented using an array and write the function for traversing through it. OR Write the algorithm for infix to postfix conversion and demonstrate with a simple example.	$\begin{aligned} & \text { M1.02 } \\ & \text { M1.03 } \end{aligned}$	U A
V.	Explain double ended queue and priority queue. OR List and briefly explain any three applications of stack.	$\begin{aligned} & \text { M1.04 } \\ & \text { M1.03 } \\ & \hline \end{aligned}$	U
VII. VIII.	Develop the algorithm for inserting a new node at the end of a singly linked list. OR Develop the algorithms for inserting a new node to and deleting a node from a queue implemented using a linked list.	M2.02 M2.04	A U
IX. X.	Write the algorithm for deleting a leaf node and node with one child in a binary search tree. OR Differentiate between full binary tree and complete binary tree.	M3.03 M3.01	U
XI. XII.	Explain how to search for a node in a binary search tree with an example. OR Explain threaded binary tree with the help of a diagram.	M3.03 M3.04	A
XIII.	Write the algorithm for breadth-first search of a graph. OR Define the terms with a figure: (i) Bipartite graph (ii) Disconnected graph	M4.03 M4.01	U

