\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2024

ENGINEERING MECHANICS

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		(9 x 1 = 9 Marks)	
		Module outcome	Cognitive level
1	A quantity which is completely specified by magnitude and direction is known as \qquad	M1.01	R
2	A single force which can replace a number of forces acting on a rigid body, without causing any change in the external effects on the body, is known as	M1.03	R
3	The equations of equilibrium which can be applied to the beams and frames for calculating the reactions at the supports are	M2.02	U
4	When the forces in only a few members of a truss are to be determined then the method used is	M2.04	U
5	The point, at which the total area of a plane figure is assumed to be concentrated, is known as \qquad	M3.01	R
6	The position of centroid of a semi-circular lamina from the base is	M3. 01	R
7	A body which does not deform when subjected to external forces is a $\ldots \ldots . .$.	M4.01	R
8	The strain at right angles to the direction of applied load is known as	M4.05	R
9	State Hooke's law.	M4.02	R

PART B

II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks.

		($8 \times 3=24$ Marks)	
		Module outcome	Cognitive level
1	State the principle of transmissibility of forces.	M1.01	U
2	Determine the magnitude of two equal forces acting at a point with an angle 60° between them, if the resultant is $30 \sqrt{ } 3 \mathrm{~N}$.	M1.03	U
3	Three forces F_{1}, F_{2} and F_{3} are acting on a body as shown in figure and the body is in equilibrium. Determine the magnitude of forces F_{1} and F_{2} by applying Lami's theorem, if $\mathrm{F}_{3}=500 \mathrm{~N}$	M1.05	U

4	List the assumptions made while finding out the forces in the members of a truss.	M 2.03	R
5	A body of weight 500 N is placed on a rough horizontal plane. If the coefficient of friction between the body and the plane is 0.3, determine the horizontal force required to just slide the body on the plane.	M 2.05	U
6	Illustrate the centre of gravity of the following. (i) \quad Cone (ii) Trapezoidal section	M 3.01	R
7	State perpendicular axis theorem.	M 3.04	R
8	Draw the stress strain curve of mild steel and define the following terms. (i) Elastic limit (ii) Ultimate stress	M 4.02	R
9	Define bulk modulus. Write the relationship between elastic modulus and bulk modulus.	M 4.05	R
10	Determine the value of Poisson's ratio of a metallic bar of length 30cm, breadth 4cm and depth 4cm when the bar is subjected to an axial compressive load. The decrease in length is given as 0.075 cm and increase in breadth is 0.003 cm.	M 4.05	U

PART C

Answer all questions. Each question carries seven marks

\begin{tabular}{|c|c|c|c|}
\hline V

VI \& | The truss ABC shown in figure has a span of 6 meters. It is carrying a load of 6 kN . Find the forces in the members AB, AC and BC |
| :--- |
| OR |
| A body of weight 100 N is placed on a rough horizontal plane. To just move the body on the plane, a horizontal pull of 80 N inclined at 20° to the horizontal plane is required. Determine the coefficient of friction. | \& M2. 03

M2.05 \& A

U

\hline VII \& | Determine the reactions at supports of the beam shown below. |
| :--- |
| OR | \& M2.02 \& U

\hline IX \& Determine the center of gravity of the section shown below with respect to the coordinate axes. All dimensions are in mm . \& M3.02 \& A

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline X \& \begin{tabular}{l}
OR \\
Determine the moment of inertia of the section shown below.
\end{tabular} \& M3.04 \& A \\
\hline \begin{tabular}{|c}
XI \\
\\
\\
\\
\\
\\
XII
\end{tabular} \& \begin{tabular}{l}
From a circular plate of diameter 100 mm , a circular part of diameter 50 mm is cut as shown. Find the centroid of the remainder. \\
OR \\
Determine the moment of inertia of the shaded area shown below about centroidal axes.
\end{tabular} \& M3. 02

M3. 04 \& A

A

\hline XIII

XIV \& \begin{tabular}{l}
Determine the modulus of elasticity of a brass rod of diameter 25 mm and length 250 mm which is subjected to a tensile load of 50 kN when the extension of the rod is 0.3 mm .

OR

Determine the value of Young's modulus and Poisson's ratio of a metallic bar of length 30 cm , breadth 4 cm and depth 4 cm when the bar is subjected to an axial compressive load of 400 kN . The decrease in length is given as 0.075 cm and increase in breadth is 0.003 cm .

 \&

M4. 05

M4. 05

M4. 03
\end{tabular} \& U

U

\hline
\end{tabular}

