2106220127

Reg.No	•••	••••	•••	•••	•••	•••	•••	•••	•	•
Signature	••••		•••	•••		•••	•••		•	•

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2024

ENGINEERING MECHANICS

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		$(9 \times 1 = 9 \text{ Marks})$	
		Module	Cognitive
		outcome	level
1	A quantity which is completely specified by magnitude and direction is	M1.01	R
	known as		
2	A single force which can replace a number of forces acting on a rigid body,	M1.03	R
	without causing any change in the external effects on the body, is known as		
3	The equations of equilibrium which can be applied to the beams and frames	M2.02	U
	for calculating the reactions at the supports are		
4	When the forces in only a few members of a truss are to be determined then	M2.04	U
	the method used is		
5	The point, at which the total area of a plane figure is assumed to be	M3.01	R
	concentrated, is known as		
6	The position of centroid of a semi-circular lamina from the base is	M3.01	R
			_
7	A body which does not deform when subjected to external forces is a	M4.01	R
8	The strain at right angles to the direction of applied load is known as	M4.05	R
9	State Hooke's law.	M4.02	R
1			

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

		(8 x 3 = 24 Marks)	
		Module outcome	Cognitive level
1	State the principle of transmissibility of forces.	M1.01	U
2	Determine the magnitude of two equal forces acting at a point with an angle 60° between them, if the resultant is $30\sqrt{3N}$.	M1.03	U
3	Three forces F_1 , F_2 and F_3 are acting on a body as shown in figure and the body is in equilibrium. Determine the magnitude of forces F_1 and F_2 by applying Lami's theorem, if $F_3 = 500N$	M1.05	U

4	List the assumptions made while finding out the forces in the members of a	M2.03	R
	truss.		
5	A body of weight 500 N is placed on a rough horizontal plane. If the	M2.05	U
	coefficient of friction between the body and the plane is 0.3, determine the		
	horizontal force required to just slide the body on the plane.		
6	Illustrate the centre of gravity of the following.	M3.01	R
	(i) Cone		
	(ii) Trapezoidal section		
7	State perpendicular axis theorem.	M3.04	R
8	Draw the stress strain curve of mild steel and define the following terms	M4 02	P
0	(i) Electic limit	1017.02	K
	(i) Elastic mint (ii) Elltimate stress		
0	Define bulk modulus. Write the relationship between electic modulus and	M4 05	D
9	bulk modulus. While the relationship between elastic modulus and	1014.05	K
10	Determine the value of Boisson's ratio of a metallic her of length 20cm	M4 05	ĪT
10	breadth form and donth form when the her is subjected to an avial	M4.03	U
	breadin 4cm and depin 4cm when the bar is subjected to an axial		
	compressive load. The decrease in length is given as 0.075cm and increase		
	in breadth is 0.003cm.		

PART C Answer all questions. Each question carries seven marks

		(6 x 7 = 42 Marks)		
		Module	Cognitive	
		outcome	level	
III	The four coplanar forces are acting at a point as shown in figure.	M1.03	U	
	Determine their resultant in magnitude and direction.			
	$\begin{array}{c} 156 \text{ N} \qquad Y \\ F_2 \\ \bullet \\ $			
	OR			
IV	An electric light fixture of weight 15 N hangs from point C by two strings	M1.05	U	
	AC and BC as shown in figure. Determine the forces in the strings AC and			
	BC.			

