\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

APPLIED PHYSICS II

[Maximum Marks:75]
[Time: 3 Hours]
PART-A
I. Answer all the following questions in one word or one sentence. Each question carries 'one' marks.
($9 \times 1=9$ Marks)

1	S.H.M may be considered as the projection of on the diameter of the circle.	M 1.01	R
2	SONAR stands for	M 1.03	R
3	Out of the given materials, which is the optically transparent medium? (wood, wax paper, stained glass, water)	M 2.01	R
4	The angle of incidence is always the angle of reflection. (equal to, greater than, less than)	M 2.01	R
5	Which type of spherical mirror is used as shaving mirror?	M 2.01	R
6	State Ohm's law.	M 3.02	R
7	Out of the following colour bands of resistances, which colour represents the tolerance value? Orange, Yellow and Yellow with Gold	M 3.02	U
8	The process of adding impurity to a semiconductor is called \ldots.	M 4.01	R
9	Give an application of solar cell.	M 4.02	R

PART - B
II. Answer any eight questions from the following. Each question carries 'Three' marks.
($\mathbf{8 \times 3} \mathbf{3}=\mathbf{2 4}$ Marks)

1	Distinguish between transverse waves and longitudinal waves.	M1.02	U
2	Suggest any three methods to control the reverberation time.	M1.04	R
3	What is the refraction of light? State the laws of refraction.	M2.01	R
4	An object is placed at a distance of 10 cm from a convex lens of focal length 12 cm. Find the position of the image.	M2.02	A
5	Define total internal reflection. What are the conditions of total internal reflection?	M2.04	R

6	State Coulomb's law. Write its mathematical expression.	M 3.01	R
7	State Faraday's law of electromagnetic induction.	M 3.04	R
8	Briefly describe the factors affecting the resistance of a conducting wire.	M 3.02	U
9	Explain the laws of photoelectric effect.	M 4.02	U
10	Distinguishing the properties of Nanomaterials form that of bulk materials.	M 4.04	U

PART - C

Answer all the questions from the following. Each question carries 'seven' marks.
(6 x $7=42$ Marks)
Module Outcome Cognitive level

III. IV.	The displacement of a particle executing S.H.M. is $y=\mathrm{a} \sin \omega t$. Derive the expressions for its velocity, and acceleration OR A station broadcasts a wavelength of 2 m . What is the frequency of the wave if the velocity of the radio wave is $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$?	M1.01 M1.02	U A
V.	a) Define the terms wavelength (λ), frequency (f), period (T) and velocity (v) of a wave. b) Write a short note on the phenomenon of beats. (3 marks) OR Sketch the image formation of a convex lens when (a) Object is placed at 2 F and (b) Object is between 2 F and F from the lens. Also give the nature of images.	M1.02 M2.01	R
VII. VIII.	With the help of a diagram explain the working of a simple microscope. OR A convex lens of focal length 20 cm is placed in contact with a concave lens of focal length 15 cm . Find out the effective focal length and power of the combination?	M2.03 M2.02	U A
IX. X.	Obtain expression for the effective resistance of a series combination and parallel combination of two resistors. OR A galvanometer of resistance 50Ω gives full scale deflection for 5 mA . How it can be converted into an ammeter of range 0 to 5 A ?	M3.02 M3.04	U A
XI. XII.	Explain the construction and working of a moving coil galvanometer. OR a) List the applications of diodes and transistors. (4 marks) b) Give the three applications of photoelectric effect. (3 marks)	$\begin{aligned} & \hline \text { M3.04 } \\ & \text { M4.01 } \\ & \text { M4.02 } \end{aligned}$	U R
XIII.	a) Discuss the band theory in solids. b) Distinguish between conductors, insulators and semiconductors on the basis of band theory. OR Describe with necessary theory, the working of $\mathrm{He}-\mathrm{Ne}$ gas LASER?	M4.01 M4.03	U

