Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2023

CONTROL ENGINEERING

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer *any five* questions from the following. Each question carries'3' marks.

		(5 x 3= 15 Marks)	
		Module Outcome	Cognitive level
1.	Define laplace transform. Write the laplace transform of the function	M1.03	R
	f(t) = t.		
2.	State initial value theorem and final value theorem.	M1.01	U
3.	State Mason's gain formula.	M2.04	R
4.	List the static error constants.	M3.02	R
5.	Draw the elements used to model mechanical translational systems.	M2.02	U
6.	What is transient response and steady state response?	M3.01	U
7.	Define absolute stability and relative stability.	M4.01	U

PART-B

Answer all questions from the following. Each full question carries '15' marks.

			$(4 \times 15 = 60)$	Marks)
II.	(a) Write any 6 comparisons on open loop and closed loo control systems. (6	op marks)	Module Outcome of M1.01	U U
	(b) Derive the laplace transform of function $f(t) = e^{-at}$ (9)	marks)	M1.03	R
	OR			
III.	(a) Find the inverse laplace transform of $F(s) = \frac{s+3}{(s+6)(s+4)}$ (7)	marks)	M1.04	А
	(b) Solve the following differential equation (8)	marks)	M1.04	А
	$\frac{dx(t)}{dt} + 3x(t) = e^{-t}, \text{ provided } x(0) = 0$			

VII.				M3.01	U
	a) Explain standard second order system with block diagram and				
		transfer function. Write shortly about different types of			
		damping. (8	3 marks)	M3.03	А
	b)	b) Open loop transfer function of a unity feedback system			
	$G(s)H(s) = \frac{10(s+2)}{s^2(s+1)}$. Find steady state error for a unit parabolic				
		input. (7 marks)		
VIII.	a)	Sketch the bode plot $G(s)=K$. (6)	6 marks)	M4.03	U
	b)	Write the procedure to construct Root locus. (9 marks)	M4.04	R
	OR				
IX.	a)	Characteristic equation of a system is given as:		M4.02	А
	$S^4 + 8S^3 + 18S^2 + 16S + 5 = 0$. Determine the stability of				
	system using Routh Hurwitz stability criterion and comment on				
		the location of roots. (9	9 marks)		
	b)	Define gain margin and phase margin. (6 marks)	M4.03	U
