\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

DIGITAL ELECTRONICS

PART A

I. Answer all the following questions in one word or one sentence. Each question carries $\mathbf{1}$ mark

		($9 \times 1=9$ Marks)	
		Module outcome	Cognitive level
1	What value is to be considered for a "don't care condition'"?............ (a) 0 (b) 1 (c) Either 0 or 1 (d) Any number except 0 an 1	M1.04	R
2	Signed negative binary number is recognised by its....... (a) MSB (b) LSB (c) Byte (d) Nibble	M1.02	R
3	The full form of ECL is	M2.02	R
4	How many select lines would be required for an 8-line-to-1-line multiplexer?	M2.04	U
5	In a $\mathrm{J}-\mathrm{K}$ flip-flop, if $\mathrm{J}=\mathrm{K}$ the resulting flip-flop is referred to as	M3.02	A
6	Which type of shift register the Q or Q^{1} output of one stage is not connected to the input of the next stage.	M3.03	A
7	Which Flip-flop do not have No change condition?	M3.03	R
8	How many flip-flops are required to make a MOD-32 binary counter?	M4.03	U
9	In a DRAM, What is the state of R / W during a read operation?	M4.04	R

PART B

II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks.

		$\mathbf{(8 \times 3 = 2 4}$ Marks)	
	Module outcome	Cognitive level	
1	Convert 567.25 10 to Hexa decimal number	M1.01	U
2	Convert to binary and subtract in 2's compliment method $-96_{10}-47_{10}$	M1.02	U
3	Construct OR gate and EX-OR gate using NAND gate	M1.03	R
4	Compare TTL and CMOS Logic familes	M2.01	R
5	Design a Half adder circuit.	M2.04	A
6	Draw the logic diagram of 4x1 multiplexer.	M2.04	R
7	Compare Combinational and sequential circuits.	M3.01	R

8	Explain the operation of SR flip flop using NOR gates Logic diagram and Truth Table.	M 3.02	U
9	Compare synchronous and Asynchronous counters.	M 4.01	R
10	What is Flash and cache memory?	M 4.01	R

PART C

Answer all questions. Each question carries seven marks

		(6×7 = 42 Marks)	
		Module outcome	Cognitive level
III	Minimize the function using K map. $\mathrm{F}=\sum \mathrm{m}(1,2,3,4,7,11,13)+\mathrm{d}(9,15)$ OR Convert the following (i) $(10101.101)_{2}=($ $)_{10}$ (ii) $(4321)_{8}=($ \qquad $)_{2}$ (iii) $(\mathrm{A} 35)_{16}=(\quad)_{2}$ (iv) $(89.625)_{10}=()_{2}$	$\begin{array}{\|c} \hline \text { M1.01 } \\ \text { M1.04 } \end{array}$	A U
V VI	Explain about BCD and Excess-3 codes with examples. OR Prove demorgan's theorems.	$\begin{aligned} & \hline \text { M1.02 } \\ & \text { M1.04 } \end{aligned}$	U U
VII VIII	Explain the terms (i) Fan-in and Fan-out (ii) Propagation delay (iii) Power dissipation and (iv) Noise margin OR Draw the logic diagram and explain 4 bit parallel binary adder.	$\begin{aligned} & \text { M2.02 } \\ & \text { M2.04 } \end{aligned}$	R U
IX X	Draw a full Subtractor Circuit and Explain. OR Draw a 4 bit Serial in-Serial out (SISO) Shift register.	$\begin{aligned} & \text { M2.04 } \\ & \text { M3.04 } \end{aligned}$	U U
XI XII	Explain the working of JK Flip Flop with diagram and Truth Table. OR What is a shift register? What are its various types? Explain.	$\begin{aligned} & \text { M3.02 } \\ & \text { M3.03 } \end{aligned}$	U R
$\begin{aligned} & \text { XIII } \\ & \text { XIV } \end{aligned}$	Design a 3 bit ripple up counter. OR Design a Mod 10 Asynchronous counter using J K flip-flops.	M4.02 M4.02	A A

