TED (21)3044
(Revision-2021)

211022023	5
-----------	---

Reg.No	
Signatura	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

DIGITAL ELECTRONICS

[Maximum marks: 75] [Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

 $(9 \times 1 = 9 \text{ Marks})$

		Module outcome	Cognitive level
1	What value is to be considered for a "don't care condition"?	M1.04	R
	(a) 0 (b) 1 (c) Either 0 or 1 (d) Any number except 0 an 1		
2	Signed negative binary number is recognised by its	M1.02	R
	(a) MSB (b) LSB (c) Byte (d) Nibble		
3	The full form of ECL is	M2.02	R
4	How many select lines would be required for an 8-line-to-1-line multiplexer?	M2.04	U
5	In a J-K flip-flop, if J=K the resulting flip-flop is referred to as	M3.02	A
6	Which type of shift register the Q or Q ¹ output of one stage is not connected	M3.03	A
	to the input of the next stage.		
7	Which Flip-flop do not have No change condition?	M3.03	R
8	How many flip-flops are required to make a MOD-32 binary counter?	M4.03	U
9	In a DRAM, What is the state of R/W during a read operation?	M4.04	R

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

 $(8 \times 3 = 24 \text{ Marks})$

		Module outcome	Cognitive level
1	Convert 567.25 ₁₀ to Hexa decimal number	M1.01	U
2	Convert to binary and subtract in 2's compliment method - 96 ₁₀ - 47 ₁₀	M1.02	U
3	Construct OR gate and EX-OR gate using NAND gate	M1.03	R
4	Compare TTL and CMOS Logic familes	M2.01	R
5	Design a Half adder circuit.	M2.04	A
6	Draw the logic diagram of 4x1 multiplexer.	M2.04	R
7	Compare Combinational and sequential circuits.	M3.01	R

8	Explain the operation of SR flip flop using NOR gates Logic diagram and	M3.02	U
	Truth Table.		
9	Compare synchronous and Asynchronous counters.	M4.01	R
10	What is Flash and cache memory?	M4.01	R

PART C Answer all questions. Each question carries seven marks

 $(6 \times 7 = 42 \text{ Marks})$

		Module outcome	Cognitive level
III	Minimize the function using K map.	M1.01	A
	$F = \sum m(1,2,3,4,7,11,13) + d(9,15)$ OR		
	Convert the following		
IV	(i) $(10101.101)_2 = (1)_{10}$ (ii) $(4321)_8 = (1)_2$	M1.04	U
	(iii) $(A35)_{16} = (\underline{})_2$ (iv) $(89.625)_{10} = (\underline{})_2$		
V	Explain about BCD and Excess-3 codes with examples.	M1.02	U
VI	OR Prove demorgan's theorems.	M1.04	U
V I	Flove demoigan's dicorems.	W11.04	U
VII	Explain the terms	M2.02	R
	(i) Fan-in and Fan-out (ii) Propagation delay		
	(iii) Power dissipation and (iv) Noise margin OR		
VIII	Draw the logic diagram and explain 4 bit parallel binary adder.	M2.04	U
IX	Draw a full Subtractor Circuit and Explain.	M2.04	U
	OR		
X	Draw a 4 bit Serial in-Serial out (SISO) Shift register.	M3.04	U
		7.62.02	
XI	Explain the working of JK Flip Flop with diagram and Truth Table. OR	M3.02	U
	OK		
XII	What is a shift register? What are its various types? Explain.	M3.03	R
XIII	Design a 3 bit ripple up counter.	M4.02	A
AIII	OR	1717.02	Λ
XIV	Design a Mod 10 Asynchronous counter using J K flip-flops.	M4.02	A
