TED (21)3043 (Revision – 2021)

2110220222

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2023

ELECTRONIC CIRCUITS

[Maximum Marks: 75]

PART-A

[Time: 3 Hours]

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks) Cognitive level
1.	Define the operating point of a transistor.	M1.01	R
2.	Write the expression for current gain of single stage CE amplifier.	M1.02	R
3.	Define quality factor of tuned amplifier.	M2.01	R
4.	What is the efficiency of Class AB push pull amplifier?	M2.04	R
5.	Write the expression for gain of feedback amplifier.	M3.01	R
6.	What is the frequency of oscillation of RC phase shift oscillator?	M3.04	R
7.	List any two applications of oscillator circuit.	M3.05	R
8.	Write the frequency of oscillation of astable multivibrator.	M4.02	R
9.	Bistable multivibrator has stable states.	M4.03	R

PART-B

II. Answer any *eight* questions from the following. Each question carries 'three' marks.

(8 x 3 = 24 Marks) Module Outcome Cognitive level

			0
1.	Draw the frequency response of RC coupled amplifier.	M1.05	R
2.	Explain features of the emitter follower.	M1.03	U
3.	Explain fixed bias circuit.	M1.01	U
4.	A series resonant circuit is tuned to 10 MHz and has a bandwidth of 100KHz. Find the Q factor of the circuit.	M2.01	А
5.	Draw the circuit of transformer coupled amplifier.	M1.04	R
6.	Define LTP and UTP of Schmitt trigger circuit.	M4.04	R
7.	Explain the working of crystal oscillator	M3.04	U
8.	Explain how the transistor works as a switch.	M4.01	U
9.	Draw the waveforms of UJT.	M4.05	R
10.	Draw the circuit of monostable multivibrators.	M4.03	R

PART-C

Answer all questions from the following. Each question carries 'seven' marks.

(6 x 7 = 42 Marks)

		Module Outcome	Cognitive level
III.	Explain voltage divider biasing with neat diagrams.	M1.02	U
	OR		
IV.	Compare RC coupling, direct coupling and transformer	M1.04	U
	coupling methods in amplifiers.		
V.	Explain class C power amplifier with neat circuit diagram and	M2.04	U
	draw its waveforms.		
	OR		
VI.	For the parallel resonant circuit with $c=150pF$, $L=100\mu H$ and	M2.01	Α
	$R=10\Omega$, find the value of the resonant frequency.		
VII.	With a neat circuit diagram, explain the working of class B	M2.03	U
	push pull power amplifier.		
	OR		
VIII.	With the help of a circuit diagram, explain the working of a	M2.01	U
	single tuned amplifier.		
IX.	Explain the principle of operation of colpitts oscillators.	M3.04	U
	OR		
V		N/2 02	р
Х.	Draw the block diagram of voltage series and voltage shunt	M3.03	K
VI	Commente maritime and maritime for the sh	M2 01	D
AI.	Compare positive and negative feedback.	M3.01	K
3711	UR UR	1 (2 0 4	T T
XII.	With neat diagram explain wien bridge oscillator.	M3.04	U
XIII	Explain the working of astable multivibrator with circuit diagram	M4 02	U
71111.	Explain the working of astable manifoldtor with encart diagram.	1011.02	U
	OR		
XIV.	With circuit diagram and waveforms, explain the working of	M4.04	U
	schmitt trigger		
			1
