\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE - NOVEMBER 2023

ENGINEERING MATHEMATICS I

(Maximum Marks:100)
(Time: 3 hours)

PART - A

(Maximum Mark : 10)

Marks

I. Answer all the questions in one or two sentences. Each question carries 2 marks.

1. Evaluate $\operatorname{lt}_{x \rightarrow 0} \frac{2 x-3}{3 x+4}$
2. Find $\operatorname{Sin} 60^{\circ} \operatorname{Cos} 30^{\circ}+\operatorname{Cos} 60^{\circ} \operatorname{Sin} 30^{\circ}$
3. Find the area of a triangle given $\mathrm{b}=3 \mathrm{~cm}, \mathrm{c}=2 \mathrm{~cm}$ and $\mathrm{A}=30^{\circ}$
4. Find $\frac{d y}{d x}$ if $\mathrm{y}=\mathrm{e}^{\mathrm{x}} \log x$
5. Find the range of values of x for which $y=2 x^{2}-8 x+1$ increasing

PART - B

(Maximum Mark: 30)
II Answer any five questions from the following. Each question carries 6 marks.

1. Express $\sqrt{3} \operatorname{Cos} x+\operatorname{Sin} x$ in the form $R \operatorname{Sin}(x+\alpha)$ where α is acute.
2. Find the value of $\tan 75^{\circ}$ without using tables and hence show that $\tan 75^{\circ}+\operatorname{Cot} 75^{\circ}=4$
3. Prove that $R\left(a^{2}+b^{2}+c^{2}\right)=a b c(\operatorname{Cot} A+\cot B+\operatorname{Cot} C)$.
4. Differentiate $\operatorname{Cos} x$ by the method of first principle.
5. If $x=\frac{1-t^{2}}{1+t^{2}} \quad y=\frac{2 t}{1+t^{2}} \quad$ Find $\frac{d y}{d x}$?
6. Find the equation of the tangent and normal to the curve $\mathrm{y}=x^{2}+\mathrm{x}-1$ at $(2,5)$
7. A cylindrical can open at one end is to have a volume of $64 \pi \mathrm{~cm}^{3}$. Find the radius and height of the cylinder such that the metal used its minimum?

PART - C

(Maximum Mark: 60)
(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - 1

III. a) If $\operatorname{Cos} A=\frac{3}{5} \quad \tan B=\frac{5}{12} \mathrm{~A} \& \mathrm{~B}$ are acute angles.

Find $\operatorname{Sin}(A+B) \& \operatorname{Cos}(A+B)$.
b) prove that $\frac{\operatorname{Sec} \theta}{\operatorname{Sec} \theta-1}+\frac{\operatorname{Sec} \theta}{\operatorname{Sec} \theta+1}=2 \operatorname{Cosec}^{2} \theta$
c) Prove that $\frac{\operatorname{Cos}(90+A) \operatorname{Sec}(360+A) \tan (180-A)}{\operatorname{Sec}(A-720) \operatorname{Sin}(540+A) \operatorname{Cot}(A-90)}=1$

OR

IV. a) Prove that $\operatorname{Sin}(A+B) \operatorname{Sin}(A-B)=\operatorname{Sin}^{2} A-\operatorname{Sin}^{2} B$
b) If $\boldsymbol{\theta}=30^{\circ}$, Verify that $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$
c) The horizontal distance between two towers is 50 m and the angle of depression of the first tower as seen from the second which is in 150 m height is 60°. Find the height of the first tower?

UNIT - II

V. a) Prove that $\frac{1+\operatorname{Cos} 2 A}{\operatorname{Sin} 2 A}=\operatorname{Cot} A$ and deduce the value of $\operatorname{Cot} 15^{\circ}$.
b) Show that $\operatorname{Cos} 55^{\circ}+\operatorname{Cos} 65^{\circ}+\operatorname{Cos} 175^{\circ}=0$
c) Solve $\triangle A B C$ given $\mathrm{a}=5 \mathrm{~cm}, \mathrm{~b}=8 \mathrm{~cm} \mathrm{c}=30^{\circ}$

OR

VI. a) Prove that $\operatorname{Sin} 10^{\circ} \operatorname{Sin} 30^{\circ} \operatorname{Sin} 50^{\circ} \operatorname{Sin} 70^{\circ}=\frac{1}{16}$
b) Prove that $2(b c \operatorname{Cos} A+c a \operatorname{Cos} B+a b \operatorname{Cos} c)=\mathrm{a}^{2}+\mathrm{b}^{2}+\mathrm{c}^{2}$
c) Two angles of a triangular plot of landare $53^{\circ} 17^{\prime}$ and $67^{\circ} 9^{\prime}$ the side between them is measured to be 100 m . How many meters of fencing is required to fence the plot? (5)

UNIT - III

VII. a) Evaluate $\operatorname{lt}_{x \rightarrow a} \frac{x^{1 / 2}-a^{1 / 2}}{x^{1 / 3}-a^{1 / 3}}$
b) If $\mathrm{y}=\mathrm{a} \sin \mathrm{mx}$ prove that $y^{\|}+m^{2} y=0$
c) If $\mathrm{y}=\mathrm{a} \cos (\log x)+\mathrm{b} \sin (\log \mathrm{x})$ show that $\frac{x^{2} d^{2} y}{d x^{2}}+\frac{x d y}{d x}+y=0$

OR

VIII. a) Evaluate $\operatorname{lit}_{x \rightarrow 5} \frac{x^{3}-125}{x^{2}-25}$
b) Find $\frac{d y}{d x}$ if \quad (i) $x=a t^{2} \quad y=2 a t$
(ii) $y=\frac{\operatorname{Sin} 2 x}{1+\operatorname{Cos} 2 x}$
c) If $y=\sin ^{-1} x$ P.T(1-x $) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}=0$

UNIT - IV

IX. a) The displacement of a body is given by $x=3 \operatorname{Cos} 4 t+5 \operatorname{Sin} 4 t$. Show that the acceleration varies as the distance.
b) Find the maximum and minimum value of $4 x^{3}+9 x^{2}-12 x+2$
c) A Circular plate of radius 3 inches expands when heated at the rate if $2 \mathrm{inch} / \mathrm{sec}$.

Find the rate at which the area of the plate is increasing at the end of 3 sec ?

OR

X . a) For what values of x is the tangent to the curve $\frac{x}{x^{2}+1}$ is parallel to the x -axis.
b) The perimeter of a rectangle is 100 m . Find the sides when the area is maximum?
c) A balloon is spherical in shape. Gas is escaping from it at the rate of $10 \mathrm{cc} / \mathrm{Sec}$. How fast is the surface area shrinking when the radius is 15 cm ?

