TED (21)3081 (Revision – 2021)

2110220057

Reg. No	•
Signature	•

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2023

DIGITAL CIRCUITS AND SYSTEMS

[Maximum Marks: **75**]

[Time: **3** Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$	Marks)
1.	List any one alphanumeric code.	M1.01	R
2.		M1.02	U
	Find the output Y, if A=1 and B=0		
3.	Define a decoder.	M2.04	R
4.	Number of select switch needed for 4:1 multiplexer is	M2.03	А
5.	Output of a adder circuit is and	M2.01	R
6.	Define modulus of a counter.	M3.06	R
7.	List out the application of shift register.	M3.04	R
8.	Asynchronous inputs of a flip flop are and	M3.03	U
9.	Define step size of a DAC.	M4.04	R

PART-B

II. Answer any *eight* questions from the following. Each question carries *'three'* marks. (8 x 3 = 24 Marks) Module Outcome Cognitive level

1. Do the following a) $11001100_2 + 11011010_2$ b) $11010_2 - 10000_2$ U M1.01 2. Draw the symbol and truth table of 3 input NOR gate. M1.02 R 3. State DeMorgan's Theorem. M1.03 R 4. Implement $F = (A+B)(A+\overline{B}')$ using basic gates. M1.03 А 5. Draw the truth table and logic diagram of half subtractor. M2.02 U Differentiate between synchronous and asynchronous sequential M3.01 U 6. circuit. 7. Draw the logic symbol and Truth table of D-Flip flop. M3.02 U Mention the methods of eliminating race around condition in JK flip U 8. M3.03 Flop. U 9. Draw the circuit of a 3 bit asynchronous updown counter. M3.08 10. Mention the advantages of R-2R ladder type DAC. M4.01 R

		$(6 \times 7 = 42)$ Module Outcome	Marks)
III.	Reduce the 4- variable expression	M1.03	U
	$F(A, B,C,D)=\Sigma m (1,3,6,9,11,14) + \Sigma d(7,15)$ using K map.		
13.7		N(1.02	TT
IV.	Implement the following function using NAND -NAND Logic	M1.02	U
V	A $D + A C + B C$ Design a full adder circuit Explain its operation implement it	M2 01	Δ
۷.	using basis gotos	1012.01	Π
	Using basic gates.		
X 7 X			
VI.	Design BCD to Decimal Decoder with its truth table and logical	M2.04	А
	diagram.		
VII.	Design and Implement a 4 to 1 multiplexer using logic gates.	M2.03	А
	OR		
VIII.	Describe the working of 4 bit Parallel adder with block diagram.	M2.01	U
IX.	Explain with the aid of truth table and logic diagram the working	M3.03	U
	of Master -Slave JK Flip Flop.		
	OR		
Х.	Explain the working of Serial -In Serial out shift register using	M3.04	U
	truth table and timing diagram.		
XL	Draw a 4-bit ring counter and explain its operation.	M3.05	U
1111		112100	C
3711			T T
XII.	Describe an asynchronous mod-10 counter.	M3.06	U
XIII.	Describe the working of binary weighted resistor DAC with	M4.01	U
	necessary diagram.		
	OR		
XIV.	Describe the working of successive approximation type ADC	M4.03	U
	using relevant diagram		-

PART-C

Answer all questions from the following. Each question carries 'seven' marks $(6 \times 7 =$

-2-
