\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2023

DIGITAL COMPUTER PRINCIPLES

[Maximum Marks: 100]

PART-A

[Maximum Marks: 10]
I. (Answer all questions in one or two sentences. Each question carries 2 marks)

1. Find 2's complement of 10110010 .
2. What is K-map?
3. What are flipflops? Give two examples.
4. Name any one error detection \& correction code.
5. What is PAL?

PART-B

[Maximum Marks: 30]
II. (Answer any five of the following questions. Each question carries $\mathbf{6}$ marks)

1. Realize OR, EX-OR gates using NAND gates.
2. Reduce the expression $\mathrm{F}=\mathrm{A}+\mathrm{B}\left[\mathrm{AC}+\left(\mathrm{B}+\mathrm{C}^{\prime}\right) \mathrm{D}\right]$.
3. Convert $\mathrm{Y}=\mathrm{A}+\mathrm{B}^{\prime} \mathrm{C}$ into standard. SOP form.
4. Design and implement a 4-bit binary to gray codeconverter.
5. Differentiate synchronous and asynchronous sequential circuits.
6. Describe the circuit of a D-flipflop with a neat diagram.
7. Explain about memory decoding.

PART-C

[Maximum Marks: 60]
(Answer one full question from each Unit. Each full question carries $\mathbf{1 5}$ marks)
UNIT - I
III. a. Explain basic gates with logic diagram and truth table.
b. State and prove De-Morgan's Theorems.

OR
IV. a. Convert i) (4F7.A8) $\mathbf{1 6}$ to $\operatorname{Octal}\left(\right.$ ii) $(\mathbf{1 0 1 1 0 . 0 1 0 1})_{2}$ to hexadecimal iii) (163.875) ${ }_{10}$ to binary.
b. Draw logic symbols and truth table of universal gates and explain.

UNIT - II

V. a. Define maxterm. Expand A ($\left.\mathbf{B}^{\prime}+\mathbf{A}\right) \mathbf{B}$ to standard POS form.
b. Design the working of a 4×1 multiplexer with neat sketch.

OR
VI. a. Minimize $\mathbf{F}(\mathbf{A}, \mathbf{B}, \mathbf{C}, \mathbf{D})=\Sigma_{\mathrm{m}}(\mathbf{1}, \mathbf{4}, \mathbf{7}, \mathbf{1 0}, \mathbf{1 3})+\mathbf{d}(5,14,15)$ using K-map.
b. Draw and explain the working of a 4-bit binary adder.

UNIT- III

VII. Explain the basic operations of shift registers with neat sketch.

OR

VIII. a. Explain the working of a J-K flipflop with diagram and truth table.
b. Design a 4-bit ring counter.

UNIT - IV
IX. a. Realize the following functions using PLA.

$$
\begin{align*}
& \mathrm{Fl}=\mathbf{A B} \mathbf{B}^{\prime}+\mathbf{A C}+\mathrm{A}^{\prime} \mathbf{B C}^{\prime} \\
& \mathbf{F 2}=(\mathbf{A C}+\mathbf{B C})^{\prime} \tag{9}
\end{align*}
$$

b. List and explain various DAC specifications.

OR

X. a. Explain R-2R ladder DAC with diagram.
b. Explain the working of counter ramp type ADC with diagram.

