TED (15/19)3133 (Revision – 2015/19)

A23-08250

Reg. No..... Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2023

DIGITAL COMPUTER PRINCIPLES

[Maximum Marks: 100]

[Time: 3 Hours]

PART-A

[Maximum Marks: 10]

I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)

- 1. Find 2's complement of 10110010.
- 2. What is K-map?
- 3. What are flipflops? Give two examples.
- 4. Name any one error detection & correction code.
- 5. What is PAL?

PART-B

[Maximum Marks: **30**]

II. (Answer *any five* of the following questions. Each question carries *6* marks)

- 1. Realize OR, EX-OR gates using NAND gates.
- 2. Reduce the expression F = A + B[AC + (B+C')D].
- 3. Convert Y = A + B'C into standard. SOP form.
- 4. Design and implement a 4-bit binary to gray codeconverter.
- 5. Differentiate synchronous and asynchronous sequential circuits.
- 6. Describe the circuit of a D-flipflop with a neat diagram
- 7. Explain about memory decoding.

PART-C

[Maximum Marks: 60]

(Answer one full question from each Unit. Each full question carries 15 marks)

UNIT – I

III.	a. Explain	basic gates with logic diagram and truth table.	(9)

b. State and prove De-Morgan's Theorems.

 $(5 \times 6 = 30)$

(6)

 $(5 \times 2 = 10)$

OR	
----	--

	UK UK	
IV.	a. Convert i) (4F7.A8) ₁₆ to Octal (ii) (10110.0101) ₂ to hexadecimal	
	iii) (163.875) ₁₀ to binary.	(9)
	b. Draw logic symbols and truth table of universal gates and explain.	(6)
	UNIT – II	
	0111 - 11	
V.	a. Define maxterm. Expand A (B'+A) B to standard POS form.	(8)
	b. Design the working of a 4×1 multiplexer with neat sketch.	(7)
	OR	
VI.	a. Minimize F (A, B, C, D) = Σ_m (1, 4, 7, 10, 13) + d (5, 14, 15) using K-map.	(8)
	b. Draw and explain the working of a 4-bit binary adder.	(7)
	UNIT- III	
VII.	Explain the basic operations of shift registers with neat sketch.	(15)

OR

VIII.	. a. Explain the working of a J-K flipflop with diagram and truth table.	(8)
	b. Design a 4-bit ring counter.	(7)

UNIT - IV

IX.	a. Realize the following functions using PLA.	
	FI = AB' + AC + A'BC'	
	F2 = (AC + BC)'	(9)
	b. List and explain various DAC specifications.	(6)

OR

Х.	a. Explain R-2R ladder DAC with diagram.	(8)
	b. Explain the working of counter ramp type ADC with diagram.	(7)
