A23 - 09646

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2023

<u>ENGINEERING MATHEMATICS – I</u>

[Maximum Marks: 100]

[Time: 3 Hours]

PART-A

[Maximum Marks: 10]

I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)

1. Find the value of $\tan 150^{\circ}$.

2. If $\tan \alpha = \frac{12}{5}$ and α is an acute angle, Find $\cos \alpha$.

- 3. Find the area of triangle having a=4, b=2, $C = 30^{\circ}$.
- 4. Evaluate $\lim_{x\to 3} \frac{x^3 27}{r-3}$
- 5. Find the slope of $y = x^{3/2}$ at x = 1.

(5 x 2 = 10)

PART-B

[Maximum Marks: 30]

- **II.** (Answer any *five* of the following questions. Each question carries **6** marks)
 - 1. Prove that $\cos(A + B) \cos(A B) = \cos^2 A \sin^2 B$.
 - 2. Prove that $\sin 120^{\circ} \cos 330^{\circ} + \cos 240^{\circ} \sin 330^{\circ} = 1$.
 - 3. Prove that R $(a^2 + b^2 + c^2) = abc(\cot A + \cot B + \cot C)$.
 - 4. The sides of a triangle are in the ratio 4:5:6. Find the angles of the triangle.
 - 5. Using the quotient rule find the derivative of $\tan x$.

6. If $y = x^2 \cos x$, prove that $x^2 \frac{d^2 y}{dx^2} - 4x \frac{dy}{dx} + (x^2 + 6)y = 0$

7. Prove that a rectangle of fixed perimeter has its maximum area when it becomes a square.

 $(5 \times 6 = 30)$

PART-C

[Maximum Marks: **60**] (Answer *one* full question from each Unit. Each full question carries **15** marks)

UNIT - I

III. (a) Prove that
$$\sqrt{\frac{1+\sin A}{1-\sin A}} = \sec A + \tan A.$$
 (5)

(b) If
$$\sin A = \frac{3}{5} \cos B = \frac{12}{13}$$
 and A and B are acute angles, find $\tan(A + B)$. (5)

(5)

(c) Express $\sqrt{3} \cos x + \sin x$ in the form $R \sin(x + \alpha)$.

OR

IV. (a) Prove that $\frac{\sin\theta}{1+\cos\theta} + \frac{1+\cos\theta}{\sin\theta} = 2 \csc \theta$.	(5)
--	-----

- (b) If $A+B = 45^{\circ}$, show that (1+tan A) (1+tan B) =2. (5)
- (c) A light house is 20 metres high. An observer on the top of the light house observes a boat at an angle of depression 30° . How far is the boat from the observer? (5)

UNIT - II

V.	(a) Prove that $1 + tan\theta \tan 2\theta = sec2\theta$.	(5)
	(b) Show that $\cos 55^0 + \cos 65^0 + \cos 175^0 = 0$.	(5)

(c) Show that $a(b \cos C - c \cos B) = b^2 - c^2$. (5)

OR

VI. (a) Prove that $\frac{\sin 3A}{\sin A}$	$\frac{1}{cosA} - \frac{\cos 3A}{\cos A} = 2.$	(5)
---	--	-----

(b) Show that $\sin 10^\circ$, $\sin 50^\circ \sin 70^0 = \frac{1}{8}$. (5)

(c) Solve the triangle, given a =
$$87$$
cm, b= 53 cm and C= 70° . (5)

UNIT-III

VII. (a) Evaluate
$$\lim_{x \to \infty} \frac{3x^{2-5x+9}}{2x^{2}+4x+7}$$
 (5)

(b) Find
$$\frac{dy}{dx}if$$
 i) $y = x^2 sin^{-1}x$ ii) $y = \log sin x$. (3+2=5)

(c) If
$$y = \sin x \cos x$$
, show that $\frac{d^2 y}{dx^2} + 4y = 0.$ (5)

OR

VIII. (a) Evaluate i) $\lim_{x \to 0} \frac{2x^2 + 3x}{3x^2 - 4x}$	ii) $\lim_{x \to 0} \frac{\sin 3x}{x}.$		(3+2=5)
--	---	--	---------

- (b) Using first principles, find the derivative of \sqrt{x} .
- (c) If $y = tan^{-1}x$, prove that $(1 + x^2) y'' + 2xy' = 0$. (5)

UNIT - IV

IX.	(a) Find the equation of the tangent and normal to the semi circle	
	$y = \sqrt{25 - x^2}$ at the point (4,3).	(5)
	(b) The distance travelled by a particle moving along a straight line after t time is given by	
	$s = 2t^3 - 9t^2 + 12t + 6$. find the value of t when acceleration is zero.	(5)

(c) Find the maximum value of $4x^3 + 9x^2 - 12x + 2$

OR

- X. (a) Prove that the function $x^3 3x^2 + 6x + 7$ is an increasing function for all real values of x. (5)
 - (b) A spherical balloon is inflated by pumping 25cc of gas per second. Find the rate at which the radius of the balloon is increasing when its radius is 15cms.
 - (c) The deflection of a beam is given by $y = 2x^3 9x^2 + 12x$. find the maximum deflection.

(5)

(5)

(5)
