$\qquad$

# DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2023 

## ENGINEERING MATHEMATICS - I

[Maximum Marks: 100]

## PART-A

[Maximum Marks: 10]
I. (Answer all questions in one or two sentences. Each question carries 2 marks)

1. Find the value of $\tan 150^{\circ}$.
2. If $\tan \alpha=12 / 5$ and $\alpha$ is an acute angle, Find $\cos \alpha$.
3. Find the area of triangle having $\mathrm{a}=4, \mathrm{~b}=2, C=30^{\circ}$.
4. Evaluate $\lim _{x \rightarrow 3} \frac{x^{3}-27}{x-3}$
5. Find the slope of $y=x^{3 / 2}$ at $x=1$.

## PART-B

[Maximum Marks: 30]
II. (Answer any five of the following questions. Each question carries $\mathbf{6}$ marks)

1. Prove that $\cos (A+B) \cos (A-B)=\cos ^{2} A-\sin ^{2} B$.
2. Prove that $\sin 120^{\circ} \cos 330^{\circ}+\cos 240^{\circ} \sin 330^{\circ}=1$.
3. Prove that $\mathrm{R}\left(a^{2}+b^{2}+c^{2}\right)=a b c(\cot A+\cot B+\cot C$.
4. The sides of a triangle are in the ratio 4:5:6. Find the angles of the triangle.
5. Using the quotient rule find the derivative of $\tan x$.
6. If $y=x^{2} \cos x$, prove that $x^{2} \frac{d^{2} y}{d x^{2}}-4 x \frac{d y}{d x}+\left(x^{2}+6\right) y=0$
7. Prove that a rectangle of fixed perimeter has its maximum area when it becomes a square.

## PART-C

[Maximum Marks: 60]
(Answer one full question from each Unit. Each full question carries $\mathbf{1 5}$ marks)

## UNIT - I

III. (a) Prove that $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$.
(b) If $\sin A=3 / 5, \cos B=12 / 13$ and $A$ and $B$ are acute angles, find $\tan (A+B)$.
(c) Express $\sqrt{3} \cos x+\sin x$ in the form $R \sin (x+\alpha)$.

## OR

IV. (a) Prove that $\frac{\sin \theta}{1+\cos \theta}+\frac{1+\cos \theta}{\sin \theta}=2 \operatorname{cosec} \theta$.
(b) If $\mathrm{A}+\mathrm{B}=45^{\circ}$, show that $(1+\tan \mathrm{A})(1+\tan \mathrm{B})=2$.
(c) A light house is 20 metres high. An observer on the top of the light house observes a boat at an angle of depression $30^{\circ}$. How far is the boat from the observer?

## UNIT - II

V. (a) Prove that $1+\tan \theta \tan 2 \theta=\sec 2 \theta$.
(b) Show that $\cos 55^{0}+\cos 65^{0}+\cos 175^{0}=0$.
(c) Show that $a(b \cos C-c \cos B)=b^{2}-c^{2}$.
VI. (a) Prove that $\frac{\sin 3 A}{\sin A}-\frac{\cos 3 A}{\cos A}=2$.
(b) Show that $\sin 10^{\circ}, \sin 50^{\circ} \sin 70^{\circ}=1 / 8$.
(c) Solve the triangle, given $\mathrm{a}=87 \mathrm{~cm}, \mathrm{~b}=53 \mathrm{~cm}$ and $\mathrm{C}=70^{\circ}$.

## UNIT- III

VII. (a) Evaluate $\lim _{x \rightarrow \infty} \frac{3 x^{2-} 5 x+9}{2 x^{2}+4 x+7}$
(b) Find $\frac{d y}{d x}$ if i) $y=x^{2} \sin ^{-1} x$ ii) $y=\log \sin x$.
(c) If $y=\sin x \cos x$, show that $\frac{d^{2} y}{d x^{2}}+4 y=0$.
VIII. (a) Evaluate i) $\lim _{x \rightarrow 0} \frac{2 x^{2}+3 x}{3 x^{2}-4 x} \quad$ ii) $\lim _{x \rightarrow 0} \frac{\sin 3 x}{x}$.
(b) Using first principles, find the derivative of $\sqrt{x}$.
(c) If $y=\tan ^{-1} x$, prove that $\left(1+x^{2}\right) y^{\prime \prime}+2 x y^{\prime}=0$.

## UNIT - IV

IX. (a) Find the equation of the tangent and normal to the semi circle $y=\sqrt{25-x^{2}}$ at the point $(4,3)$.
(b) The distance travelled by a particle moving along a straight line after $t$ time is given by $s=2 t^{3}-9 t^{2}+12 t+6$. find the value of $t$ when acceleration is zero.
(c) Find the maximum value of $4 x^{3}+9 x^{2}-12 x+2$

## OR

X. (a) Prove that the function $x^{3}-3 x^{2}+6 x+7$ is an increasing function for all real values of $x$. (5)
(b) A spherical balloon is inflated by pumping 25 cc of gas per second. Find the rate at which the radius of the balloon is increasing when its radius is 15 cms .
(c) The deflection of a beam is given by $y=2 x^{3}-9 x^{2}+12 x$. find the maximum deflection.

