

Reg. No	•
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2022

DIGITAL CIRCUITS & SYSTEMS

[Maximum Marks: 75]

[Time: 3 Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks) Cognitive level
1.	Define Radix of a number system.	M1.01	R
2.	Write the truth table of a NOR gate.	M1.02	R
3.	Define Decoder.	M2.04	R
4.	Write any two applications of De-Multiplexer.	M2.03	R
5.	Name any two flip flop's used in digital circuits.	M3.02	R
6.	Define modulus of a counter.	M3.06	R
7.	Define up down counter.	M3.08	R
8.	Write the disadvantages of Binary resistor DAC.	M4.01	U
9.	List any two ADC.	M4.04	R

PART-B

II. Answer any *eight* questions from the following. Each question carries *'three'* marks.

$(8 \times 3 = 24 \text{ Marks})$

		Module Outcome	Cognitive level
1.	Convert $215_{(10)}$ to binary, Octal and Hexadecimal.	M1.01	А
2.	State De-Morgan's Theorem.	M1.03	R
3.	Draw the logic diagram of an Ex OR gate using NOR gates.	M1.02	R
4.	Draw the logic diagram of 4:1 Multiplexer.	M2.03	U
5.	Design a Half Subtractor circuit using NAND gates.	M2.02	А
6.	Design a 3 bit encoder.	M2.04	Α
7.	Compare Asynchronous and Synchronous sequential circuits.	M3.01	U
8.	Explain the working of Serial In Serial Out Shift register.	M3.04	U
9.	Draw the circuit diagram of a Ring counter.	M3.05	U
10.	Define Resolution and Offset voltage of DAC.	M4.04	U

PART-C

Answer all questions. Each question carries 'seven' marks.

		$(6 \times 7 = 42)$ Module Outcome	Marks)
III.	Solve the following	M1.01	A
	a. 11011 – 10110 (using 2's complement method)		
	b. 1001-1100 (using 1's (complement method)		
	c. 101111÷101		
	d. 1110 x 101		
	OR		
IV.	Minimize the expression $f=\Sigma m (1,2,6,7,8,13,14,15)+d (3,5,12)$	M1.03	А
V.	Describe a Full Adder using basic gates.	M2.02	U
	OP		
VI	Describe BCD to Decimal decoder	M2 04	IJ
, 1.		1012.01	U
VII.	Explain the working of Parallel binary adder with circuit diagram.	M2.01	U
	OR		
VIII.	Design a 3 bit Binary to Gray code convertor using Basic gates.	M2.06	А
IX.	Describe the working of S R flip flop using NAND gates.	M3.02	U
	OR		
Х.	Design mod-8 Synchronous Counter.	M3.07	U
XI.	Draw the circuit diagram Truth table and Timing diagram of 3bit	M3.05	U
	Johnson Counter.		
	OR		
XII.	Describe 3 bit up-down Counter.	M3.08	U
XIII.	Describe the working of R-2R Ladder type DAC.	M4.02	U
	OR		
XIV.	Describe the working of Successive Approximation type ADC.	M4.03	U
