$\qquad$
$\qquad$

# DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL - 2022 

## APPLIED PHYSICS - II

[Maximum marks: 75]
(Time: 3 Hours)
PART A
I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

|  |  | (9x1 = 9 Marks) |  |
| :---: | :---: | :---: | :---: |
|  |  | $\begin{array}{\|l\|} \hline \begin{array}{l} \text { Module } \\ \text { outcome } \end{array} \\ \hline \end{array}$ | Cognitive level |
| 1 | SI unit of frequency is | M1.01 | R |
| 2 | State the following statement is true or false. The heat waves are longitudinal waves. | M1.02 | R |
| 3 | Sun is visible before sunrise and after sunset because of | M2.01 | U |
| 4 | SI unit of power of a lens is ............. | M2.02 | R |
| 5 | Name the principle behind the phenomenon of mirage? | M2.04 | R |
| 6 | $\qquad$ is the ratio of magnitude of charge ' Q ' on either plates and potential difference across the plate. | M3.01 | R |
| 7 | Ohm's law states a relation between the potential difference and the ......... | M3.02 | R |
| 8 | Give the names of two dopants for making n-type semiconductors. | M4.01 | R |
| 9 | Nanoparticles have relatively........ surface area when compared to the same volume of the bulk material. (smaller/larger) | M4.04 | R |

PART B
II. Answer any eight questions from the following. Each question carries $\mathbf{3}$ marks.

|  |  | (8 x 3 = 24 Marks) |  |
| :---: | :---: | :---: | :---: |
|  |  | Module outcome | Cognitive level |
| 1 | Give three applications of ultrasonic waves | M1.03 | R |
| 2 | Distinguish between echo and reverberation. | M1.04 | U |
| 3 | What is reflection of light? State the laws of reflection | M2.01 | R |
| 4 | What is spherical aberration? How it can be eliminated? | M2.02 | R |
| 5 | Sketch the image formation by a convex lens when object is placed between focus and optic centre of lens. | M2.01 | U |
| 6 | State Coulomb's law. Write its mathematical expression. | M3.01 | R |
| 7 | Explain the term specific resistance of a material? Write its expression | M3.02 | U |
| 8 | State Faraday's law of electromagnetic induction | M3.04 | R |
| 9 | Explain the population inversion. | M4.03 | U |
| 10 | Differentiate the emitter, base and collector based on their size and doping? | M4.01 | U |

## PART C

III. Answer all questions. Each question carries seven marks


