TED (21)	-1004
(Revision	- 2021

2102220007A

Reg.No	 	 	 	 	 	
Signature.						

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – NOVEMBER -2021.

APPLIED CHEMISTRY

(Maximum Marks : 75) [Time : 3 hours]

PART-A

I. Answer all the following questions in one word or sentence.

(9 x 1 = 9 marks) Module Outcome Cognitive level

1	Define orbital.	M 1.02	U
2	Which type of bonding is present in hydrogen molecule?	M 1.03	U
3	Give the relation between pH and pOH.	M2.02	R
4	Which is the indicator used for the titration of oxalic acid X potassium hydroxide?	M2.01	U
5	Removal of pathogenic germs from drinking water is called	M2.04	R
6	Which type of glass is used for making laboratory wares?	M3.01	R
7	is an example of a thermosetting polymer.	M3.02	R
8	Define oxidation according to electronic concept.	M4.01	R
9	Give an example for an antirust solution.	M4.05	R

PART B

II. Answer any Eight questions from the following.

 $(8 \times 3 = 24)$ Module Outcome Cognitive level

1	Calculate the uncertainty in the position of an electron, if the	M 1.02	U
	uncertainty in velocity is $4.3 \times 10^2 \text{ ms}^{-1}$ (h=6.625x10 ⁻³⁴ kgm ² s ⁻¹ ,		
	mass of electron = $9.1 \times 10^{-31} \text{ kg}$		
2	Define ionic bond. Explain ionic bonding in NaCl	M 1.03	U
3	Define ionic product of water. Give its mathematical	M2.02	R
	expression.		
4	Calculate the pH of 10 ⁻³ M HCl.	M2.02	A
5	A solution is prepared by dissolving 2.8 g of KOH in water to	M2.01	A
	give 500 ml of the solution. Calculate the molarity of the		
	solution (Molecular mass of KOH=56).		

6	Define alloys. Give the components of	M3.01	R
	(i)Brass (ii)Solder		
7	What are homopolymers and copolymers? Give one example	M3.02	R
	for each.		
8	Define vulcanisation. Give any two advantages of vulcanized	M3.02	R
	runner.		
9	Distinguish between metallic and electrolytic conductors.	M4.03	R
10	What is a fuel cell? Give one example.	M4.04	R

PART C

III. Answer all questions from the following.

 $(6 \times 7 = 42 \text{marks})$

Module Outcome Cognitive level

1	What are the postulates of Bohr atom model? Give any two	M 1.01	R
	limitations of Bohr's model of atom.		
	OR		
2	(a) State Aufbau principle. (2 marks)	M 1.02	U
	(b) Write down the electronic configuration of Aluminium		
	and give the values of four quantum numbers of 3p		
	electron in Aluminium. (5 marks)		
3	(a) What do you understand by the following in a	M2.01	A
	volumetric analysis?		
	(i) standard solution (ii) end point (4 marks)		
	(b) 20 ml.of sodium hydroxide solution was neutralized by		
	18ml. of an acid of normality 0.1. Find the normality of		
	the base. (3 marks)		
	OR		
4	(a) Define buffer solution. Give an example for an acidic	M2.02	U
	and basic buffer. (3 marks)		
	(b) Give any four applications of pH. (4 marks)		

5	Give the reason for hardness of water. Explain ion exchange	M2.03	U
	method for removal of hardness of water.		
	OR		
6	What is potable water? Explain the steps involved in	M 2.04	U
	making potable water.		
7	What are refractory materials? Give an example. Give any	M3.01	R
	four characteristics of refractory materials.		
	OR		
8	What are nanomaterials? Give an example for a two-	M3.03	U
	dimensional nanomaterial. Give any five applications of		
	nanomaterials.		
9	Define electrolysis. Write down procedure for electroplating	M4.03	U
	a mild steel spoon with nickel.		
	OR		
10	(a) Give the electrode reactions and net reaction in	M4.04	U
	Daniel cell. (3 marks)		
	(b) A cell is constructed using zinc and silver electrodes		
	$(E^{0}_{Zn}^{2+}/_{Zn} = -0.76V, E^{0}_{Ag}/_{Ag} = +0.80V).$		
	Identify the anode and cathode and calculate		
	the emf. (4 marks)		
11	(a) State Faraday's second law of electrolysis. Give its	M4.02	A
	mathematical expression and explain the terms.		
	(3 marks)		
	(b) Two electrolytic cells containing silver nitrate solution		
	and copper sulphate solution are connected in series.		
	A steady current was passed through them till 1.078 g		
	of Ag was deposited. Calculate the mass of copper		
	deposited. (Equivalent mass of copper = 31.75 and		
	Equivalent mass of silver = 107.8). (4 marks)		
12	OR	M4.05	TT
12	Define corrosion. Explain various methods of barrier	M4.05	U
	protection of corrosion.		

.....