TED (15/19) -3133 (Revision- 2015/19)

Reg.No	•••	 	•			•	• •	•		•••	•••	•••	•••	•••		
Signature.	•••	 •••		•••	•••	•••	•••	•••	•••	••	•••	•	•		•	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE –APRIL -2022.

DIGITAL COMPUTER PRINCIPLES

(Maximum Marks : 100)

PART-A

(Max. Marks:10)

Marks

[Time : 3 hours]

I. Answer all the questions in one or two sentences. Each question carries 2 marks.

- 1. 2's complement of 1011 is
- 2. Define minterm.
- 3. State the function of a latch.
- 4. Define resolution of DAC.
- 5. $10_{(16)} + 10_{(8)} = \dots \dots (2)$

(5x2=10)

PART - B

(Max. Marks: 30)

II Answer **any five** of the following questions . Each question carries 6 marks.

- 1. Describe briefly about standard forms of boolean functions.
- 2. Reduce the expression A'C + A'B + AB'C+ BC.
- 3. Draw the logic diagram of a 4 bit magnitude comparator and mark the output boolean expressions.
- 4. Briefly explain about multiplexer with examples.
- 5. What are the features of sequential circuits ? How do they differ from combinational circuits?
- 6. Draw the block diagram of a 3 bit ring counter and show the outputs.
- 7. Describe briefly about error detection and correction using hamming code.

(5x6 = 30)

PART - C

(Max. Marks: 60)

(Answer one full question from each unit. Each question carries 15 marks)

UNIT I

	UNITI	
III	a) State distributive law and illustrate it using logic gates	(8)
	b) Draw truth table for the expression A'B'C + A'BC + AB'C + ABC	(7)
	OR	
IV	(A = A + A'B = A + B)	(8)
	b) Convert $(A'+B+C)(B'+C+D')(A+B'+C'+D)$ into standard form	(7)
	UNIT- II	
V	a) What is a don't care term? Simplify $F(A,B,C,D) = \sum(1,3,7,11,15) + \sum d(0,2,5)$	(10)
	b) Show the truth table and circuit diagram of a full-adder	(5)
	OR	
VI	a) Show the arrangement of two half-adders to form a full-adder	(8)
	b) Implement $f = \sum (1,2,4,7)$ using a 3 to 8 decoder.	(7)
	UNIT- III	
VII	a) Explain the working of JK-Flipflop with truth table and diagram	(9)
	b) Draw circuit diagram and truth table of a 3 bit Johnsons Counter	(6)
	OR	
VII	I a) Draw the block diagram of a decade ripple counter	(9)
	b) Briefly explain about 3 applications of shift registers	(6)
	UNIT – IV	
IX	a) What is hamming code? Determine the parity bits and their positions, if eve	n
	parity is followed in hamming code, corresponding to the data 11000100.	(9)
	b) Write briefly about settling time and offset error in DAC.	(6)
	OR	
Χ	a) Design a combinational circuit that generates the following boolean function	ıs
	using PLA (i) $p(A,B,C) = AB'+A'B$ (ii) $q(A,B,C) = AB+BC+AC$	(8)
	b) Write briefly i) Programmable Logic Devices ii) memory encoding	(7)
