TED (15/1	19) -3042
(Revision	-2015/19)

A2	2-	0	8	2	8	4

Reg.No	 	 		 		
Signature.	 	 	 	 	 	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL -2022.

DIGITAL ELECTRONICS

(Maximum Marks : 100) [Time : 3 hours]

PART-A

(Maximum marks: 10) Marks

- I. Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Define radix of a number.
 - 2. Draw symbols of universal gates.
 - 3. Define fan-in.
 - 4. Write any two applications of shift register.
 - 5. List different types of ADCs.

(5x2=10)

PART - B

(Maximum Marks: 30)

- II Answer any **five** of the following questions . Each question carries 6 marks.
 - Convert the following binary numbers to decimal (a)1011 (b)1101101
 (c)1101110.011.
 - 2. Implement all logic gates using NAND gate only.
 - 3. Draw and explain the working principle of TTL inverter.
 - 4. Implement the Full adder circuit using NAND gates only.
 - 5. Draw and explain J-K Flip flop using NAND gates.
 - 6. Explain the working principle of Johnson-counter.
 - 7. With a neat sketch explain the working principle of MOD-10 asynchronous counter using J-K flip-flop. (5x6 = 30)

PART - C

(Maximum marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT I

- **III** (a) Perform the following binary operations
 - (i)11011+1101 (ii) 10111.101+110111.01 (3)1110-1001 (iv)1101-1010 (8)
 - (b) State Demorgans Theorem ... Reduce the following expression using K-map

$$F = \sum m(5,6,7,9,10,11,13,14,15)$$
 (7)

OR

- **IV** (a) Explain the operation of AND,NAND and EXOR gates with their symbols and truth tables. (9)
 - (b) Reduce the following Boolean expressions.

(i)A(
$$\overline{A}$$
 +BC) (ii) A(BC+ \overline{B} C) (iii)AAB(\overline{A} BC + BBC) (6)

UNIT-II

- V (a) Compare TTL and ECL logic families.
- (8)

(8)

(b) Draw and Explain the working principle of 4X1 multiplexer. **(7)**

OR

- VI (a) Explain the working principle of CMOS NAND gate.
 - (b) Draw the circuit of Binary-to-gray code converter and explain. **(7)**

UNIT-III

VII	(a) Compare D and T Flip-flops.	(8)
	(b) State race around condition in J-K Flip-flop and list the methods for eliminat	ing
	race around condition.	(7)
	OR	
VII	I (a) Draw and explain the working principle of serial in serial out shift register.	(8)
	(b) Describe the working principle of ring counter.	(7)
	UNIT – IV	
IX	(a) Draw and explain the working principle of 3 bit up-down counter J-K flip-flop.	(9)
	(b) Differentiate between synchronous and asynchronous counters.	(6)
	OR	
X	(a) Explain R-2R Ladder type digital to analog converter with a diagram.	(8)
	(b) Describe Flash type ADC.	(7)
