TED (15/19) - 2003 (REVISION-2015/19)

N21-00670

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANGEMENT/ COMMERCIAL PRACTICE - NOVEMBER 2021

ENGINEERING PHYSICS II

(Maximum Marks:75)

(Time: $2\frac{1}{4}$ hours)

PART - A

Marks

- I. Answer *any three* questions in one or two sentences. Each question carries 2 marks.
 - 1. What does banking of road and track mean?
 - 2. Define escape velocity. Write its mathematical expression.
 - 3. State Ohm's law and write the mathematical equation.
 - 4. Distinguish between spontaneous and stimulated emission.
 - 5. Why the control rods used in nuclear fission reactor? Mention the names of two materials used as control rods. $(3 \times 2 = 6)$

PART - B

II Answer *any four* of the following questions. Each question carries 6 marks.

- 1. Two particles of equal mass are revolving in a circular path of radius 2R and 3R with speed V and 2V respectively. What is the ratio of their centripetal force?
- 2. A circular disc is rolling on a horizontal surface at a speed of **3 rev/s**. Radius of the disc is **10 cm** and mass is **1.2 kg**. Calculate its total kinetic energy.
- 3. The acceleration due to gravity on the surface of the earth is 9.8m/s^2 . Find the height above the earth at which g is 9.6 m/s^2 . Given that radius of the earth is 6400km.
- 4. Two wires when connected in series have an effective resistance 10Ω . When they connected in parallel the effective resistance is 2.4 Ω . Find the individual resistances.
- 5. The threshold wavelength for photo electric effect in a metal is **500n m**. What is the maximum velocity with which electrons eject out when it is irradiated with a light of wavelength **100n m**.
- 6. A galvanometer has resistance 100Ω . It gives full scale deflection for 1 mA. Find out the voltage range that the instrument can read when a resistance of 4900Ω is connected in series.

7. Find out the mass of the moon if the acceleration due to gravity at the surface is **1.62** m/s². Radius of the moon is **1750** km and universal gravitation constant $G=6.67 \times 10^{-11}$ SI unit. (4 x 6 = 24)

PART – C

(Answer any of the three units from the following. Each full question carries 15 marks.)

UNIT - I

III	(a)	Define radius of gyration.	Write its expression.	(3)
-----	-----	----------------------------	-----------------------	-----

- (b) Explain parallel axis and perpendicular axis theorems of moment of inertia. (6)
- (c) A string can withstand a tension of 25N. What is the greatest speed at which
 2 Kg mass can be whirled in a horizontal circle using a string of 2m length. (6)

OR

- IV
 (a)
 What you mean by angular velocity? Derive the relation between linear velocity and angular velocity.
 (3)
 - (b) Derive the expression for moment of inertia of a disc about an axis passing through its centre and perpendicular to its plane.
 (6)
 - (c) Five masses are placed on a massless road as shown in figure. The distance between two consecutive masses is 0.1 m. Find the moment of inertia about the axis passing through 1 kg mass

(6)

UNIT – II

V	(a)	State Newton's universal law of gravitation. Write the mathematical	
		expression of the law.	(3)
	(b)	Discuss the variation of acceleration due to gravity \boldsymbol{g} with height from the	
		surface of the earth.	(6)

(c) Calculate the force of attraction between two masses each of 5000kg

		separated by a distance of 10cm . G= 6.67×10^{-11} SI unit.	(6)			
OR						
VI	(a)	Explain the term Gravitation potential.	(3)			
	(b)	Obtain the expression for the orbital velocity of an artificial satellite revolving				
		around the planet in terms of acceleration due to gravity $m{g}$	(6)			
	(c) A remote sensing satellite of earth revolving in an orbit at a height 300					
		above the earth surface. What is its orbital velocity? Given earth radius as				
		6400 km.	(6)			
UNIT – III						
VII	(a)	State Kirchhoff's laws.	(3)			
	(b)	Using Kirchhoff's laws derive the balancing condition for Wheatstone's				
		bridge	(6)			
	(c)	Explain the construction and working of a moving coil galvanometer	(6)			
		OR				
VIII	(a)	State and explain Biot's Savart's law.	(3)			
	(b)	Explain the construction and working of Metre Bridge	(6)			
	(c) Calculate the length of a conducting wire of radius 0.1 mm to get a resist		nce			
		of 10Ω if the resistivity of the wire materials is $49 \times 10^{-8} \Omega m$	(6)			
		UNIT – IV				
IX	(a)	Using neat diagram explain the construction and working of Ruby laser	(6)			
	(b)	What are the uses of a nuclear reactor .	(3)			
	(c)	State Einstein's photoelectric equation. Explain the laws of photoelectric				
		effect.	(6)			
OR						
Х	(a)	Using neat diagram explain the construction and working of He-Ne laser	(6)			
	(b)	List the applications of photoelectric effect	(3)			
	(c) List the essential components of nuclear fission reactor. Discuss the ene					
		production in Sun.	(6)			

.....