A21 – 07628

Reg. No..... Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2021

ELECTRICAL TECHNOLOGY

[Maximum Marks: 75]

[Time: 2.15 Hours]

 $(3 \times 2 = 6)$

PART-A

(Answer *any three* questions in one or two sentences. Each question carries 2 marks)

- I. 1. Define form factor.
 - 2. List the different losses in a transformer.
 - 3. List the various effect of armature reaction in DC generator.
 - 4. Which starter is most suitable for starting DC shunt motor.
 - 5. Define slip.

PART-B

(Answer *any four* of the following questions. Each question carries 6 marks)

- II. 1. Define (a) Inductive reactance (b) Capacitive reactance (c) Power factor.
 - 2. A coil has resistance of 15 ohm and inductance of 0.5 H are connected in series with the supply of 230V, 50Hz. Calculate impedance and current.
 - 3. Derive the EMF equation of transformer.
 - 4. List the advantages and uses of auto transformer.
 - 5. What are the different parts of a DC generator?
 - 6. Explain the significance of back EMF in DC motor.
 - 7. State the advantages of stationery armature in a alternator. $(4 \times 6 = 24)$

PART-C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT – I

III. (a) Describe the effect through a RLC circuit.	(8)
(b) Explain the necessity of earthing in equipment and installation.	(7)

OR	
IV. (a) Explain the neat sketch of pipe earthing.	(8)
(b) A resistance of 50 ohm connected in series with a capacitance of 43.7 micro fared are	e fed by
250V, 50Hz supply. Find 1) Impedance 2) Current 3) Power absorbed	(7)

UNIT – II

V.	(a) Illustrate the elementary theory of an idle transformer.	(8)
	(b) State and prove super position theorem.	(7)

OR

VI. (a) A 50 KVA single phase transformer having the number of primary and secondary windings are 834 and 58 respectively. The primary is connected to a 3300V, 50Hz supply find

- Transformation ratio 2) Secondary Induced EMF 3) Primary and secondary current. When the transformer is fully loaded. Neglect the losses. (8)
- (b) State and prove Thevenin's Theorem. (7)

UNIT-III

VII. (a) Explain the principle of operating of a DC generator.	(8)
(b) Explain the necessity of starter in a DC motor starting.	(7)

OR

VIII. (a) Describe the characteristics of DC shunt motor.	(8)
(b) Calculate the EMF generated by a 4 pole wave wound armature having 45 slots with 18	
conductors per slots. When driven at 1200 rpm. The flux per pole is 0.016wb.	(7)

UNIT - IV

IX.	(a) Explain the working principle of alternator.	(8)
	(b) Compare squirrel cage and slip-ring induction motor.	(7)

OR

Х.	(a) Explain the construction and working of a capacitor start induction run motor.	(8)
	(b) Derive the EMF equation of a alternator.	(7)