TED (15/19) -3042 (Revision- 2015/19)

A21-09306

Reg.No	••••
Signature.	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL -2021.

DIGITAL ELECTRONICS

(Maximum Marks : 75)

[Time : 2.15 hours]

PART-A

Marks

I. Answer any three questions in one or two sentences. Each question carries 2 marks.

- 1. Write two examples of non-weighted code.
- 2. Expand ECL.
- 3. Write the methods of eliminating race around condition in JK flipflop.
- 4. Define accuracy in DAC.
- 5. Karnaugh map is used for _____ (3x2=6)

PART - B

II Answer **any four** of the following questions . Each question carries 6 marks.

- 1. Convert (a) 26_{10} to Binary (b) 101101101_2 to Hex (c) 12 AH to Binary.
- 2. Describe the working of CMOS NAND gate.
- 3. Describe the working of SR flipflop using NAND gates.
- 4. Draw the circuit of mod-10 asynchronous counter and its timing diagram.
- 5. Draw the symbols and truth tables of AND, OR, and EX:OR gates.
- 6. Describe the operation of 4x1 Multiplexer.
- 7. Explain the working of a 4 bit ring counter.

[4x6 = 24]

PART - C

(Answer any of the three units from the following. Each full question carries 15 marks)

UNIT I

- III (a) Subtract 101101 from 110011 by using 2's complement addition method. (5)
 - (b) Simplify by using Boolean Algebra and implement.
 - Y = AB + A(B + C) + B(B + C)(5)
 - (c) Draw the circuit and truth table of the function $F(A,B,C) = \sum (1,4,6,7)$ (5)

	OR	
IV	(a) Write any four application of Gray code.	(6)
	(b) Simplify by using K-Map and implement.	
	$Y(A,B,C,D) - \sum (0,1,3,4,5,8,10,15) + d(6,7,11,)$	(9)
	UNIT- II	
V	(a) Design a full adder circuit.	(8)
	(b) Describe the circuit of TTL inverter.	(7)
OR VI (a) Explain the working of 3 bit encoder. (7)		
• 1		(')
	(b) Define: (i)Noise Immunity (ii) Propagation Delay	
	(iii)Fan-out (iv) Fan-in	(8)
UNIT- III		
VII	(a) Describe the working of Serial In Serial Out Shift Register.	(8)
	(b) Describe the working of Master Slave JK Flipflop.	(7)
OR		
VП	I (a) Describe sequential logic circuits.	(7)
	(b) Describe about Parallel In/Serial Out Shift Registers.	(8)
	UNIT – IV	
IX	(a) Explain abuout mod-8 synchronous counter.	(8)
	(b) Describe flash type ADC.	(7)
OR		
X	(a) Explain the working of R-2R ladder type DAC.	(7)
	(b) Describe the working of 3 bit asynchronous up-down counter.	(8)
