TED	(10)	-1016A
(Rev	ision	-2010)

N20-R01467

Reg.No	 	 	
Signature.	 	 	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – NOVEMBER -2020

COM	MERCIAL PRACTICE – NOVEMBER	-2020.
(Maximum Marks : 50)	APPLIED SCIENCE -II PART-A	[Time: 1 ½ hours] Marks
(Answer all questions in	n one or two sentences. Each question car	rries 2 marks)
I. (a) Explain SON	AR	
(b) State the laws	s of refraction.	(2x2=4)
	PART - B	
(Answer any two	questions . Each question carries 8 marks	s)
II. (a) Derive an ex	apression for the workdone by a couple.	4
(b) Engine oil p	asses through a fine tube of diameter 1.8n	nm in an engine.
The tube is 0.0	055 cum long. What pressure difference i	is needed to maintain
a rate f flow o	of 5.6x10 ⁻⁶ m ³ per minute. Coefficient of v	riscosity of engine
oil=0.6 Nsm ⁻²	•	4
III. (a)Explain how	light travels through an optic fiber. Give	two uses of optic
Fibers.		4
(b) Derive the ba	alancing condition for a Wheatstone's bri	dge. 4
IV. (a) State Berno	oulli's principle and explain the working o	f atomizer. 4
(b) The work fu	unction for a metal is $6.4 \times 10^{-19} J$. Calculat	e its threshold
wavelengt	h.	4
(Answer one full c	PART - C (Maximum marks : 60) question from each unit. Each full question	n carries 15 marks)
	UNIT I	
V. (a) Define Simple Harr	monic Motion. Give two examples.	(3)
(b) Derive the equation	of continuity.	(3)

(c) Determine the excess pressure inside a drop of water of radius 2mm. Surface ter	nsion
of water is 0.072 N/m.	(3)
(d) Derive an expression for the resultant of two forces in magnitude and direction	
by applying parallelogram law.	(6)
OR	
VI (a) Derive the relation between wave velocity, frequency and wavelength.	(3)
(b) Derive the relation between surface tension and surface energy.	(3)
(c) The resultant of two forces acting at and angle 150 degree is perpendicular to	
the smaller of the forces. The greater force is 48N. Determine the smaller force	e
and resultant.	(4)
(d) For a body executing uniform circular motion, prove that the projection of it	
on any diameter executes simple harmonic motion.	(5)
VII. (a) Write down the lens maker's formula and explain the terms.	(3)
(b) State and explain Kirchoff's laws.	(3)
(c) A galvanometer having a resistance 20Ω gives full scale deflection for a current	nt
of 5mA. How will you convert into an ammeter to read upto 1 A.	(3)
(d) Explain the principle and working of a moving coil galvanometer	(6)
OR VIII (a) Write down the truth table, logic symbol and Boolean equation for NOR gate.	(3)
(b) Calculate the current through a circular coil of 50 turns and radius 0.2m when	
the magnetic flux density produced at the centre is 3.14×10^{-4} T.	(3)
(c) Explain the terms induced absorption, spontaneous emission and stimulated	
emission.	(3)
(d) What are the laws of photoelectric emission and derive Einstein's photoelectric	;
equation.	(6)

TED (10) 1016 B		Reg.No
(Revision-2010)	N20-R01470	Signature

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER-2020

APPLIED SCIENCE-II (Chemistry)

PART - A

[Maximum marks: 4]

(Answer all questions in one or two sentences. Each question carries 2 marks)

- I. (a). Define the term vulcunisation.
 - (b). Write the anode and cathode reaction takesplace in Daniel cell.

 $(2 \times 2 = 4)$

PART - B

[Maximum marks: 16]

(Answer any *two* full questions. Each question carries 8 marks)

- II. (a). What are the differences between electroplating and anodizing.
 - (b). List any four qualities of a good fuel.
- III. (a). What is green house effect? Write two consequences of it.
 - (b). Explain the theory of electrochemical corrosion.
- IV. (a). What are the differences between thermoplastic and thermosetting plastic.
 - (b). List any four applications of adsorption.

 $(2 \times 8 = 16)$

PART - C

[Maximum marks: 30]

(Answer one full question from each unit. Each question carries 15 marks)

UNIT -I

- V. (a). How will you distinguish between physical adsorption and chemical adsorption. (4)
 - (b). What are primary and secondary cell? Give one example of each. (4)
 - (c). Explain cathodic protection and barrier protection method inorder to prevent corrosion. (4)
 - (d). Define corrosion. Write the chemical formula of rust. (3)

VI. (a). What are the differences between metallic conduction and electrolytic conduction.	(4)
(b). Distinguish between galvanic cell and electrolytic cell.	(4)
(c). Explain any four factors that affect adsorption.	(4)
(d). List any three conditions required for the rusting of iron.	(3)
UNIT-II	
VII. (a). Define the following terms.	
(i). Catenation. (ii). Isomerism.	(4)
(b). Write the monomers present in the following polymers.	
(i). Buna-S. (ii). Teflon. (iii). Bakelite. (iv). Neoprene.	(4)
(c). Write any four comparison of solid, liquid and gaseous fuels.	(4)
(d). List any three harmful effects of acid rain.	(3)
OR	
VIII. (a). Explain the reason for the uniqueness of carbon atom.	(4)
(b). Differentiate homopolymers and copolymers with one example for each.	(4)
(c). What are propellants? Explain the classification of propellants based on physical state.	(4)
(d). List any three air pollutants and write one adverse effect of each pollutant on	
environment.	(3)
