\qquad
Signature. \qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER-2020

TECHNICAL MATHEMATICS-I

[Maximum marks: 100]
(Time: 3 Hours)
PART - A
[Maximum marks: 10]
(Answer all questions. Each question carries 2 marks)
I. (1). If $\mathrm{A}=\left(\begin{array}{cc}2 & 3 \\ -1 & 2\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right)$ find $2 \mathrm{~A}+\mathrm{B}$
(2). Evaluate $\left|\begin{array}{cc}4 & -2 \\ 2 & 3\end{array}\right|$
(3). In how many ways 4 athletes can be chosen out of 10 .
(4). State the identity for $\sin (A+B)$ and $\cos (A-B)$
(5). Find the slope of the line determined by the pairs of points $(5,-2)$ and $(6,5)$.
$(5 \times 2=10)$

PART - B

[Maximum marks: 30]
(Answer any five of the following questions. Each question carries 6 marks)
II. (1). If $\mathrm{A}=\left(\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right)$, show that $\mathrm{A}^{2}-4 \mathrm{~A}-5 I=0$
(2). Solve using determinants.

$$
3 x+y-z=3,-x+y+z=1, x+y+z=3
$$

(3). Find the middle terms of $\left(x 2+\frac{2}{x}\right)^{7}$
(4). If $\sin \theta=\frac{3}{5}, \theta$ lies in second quadrant. Find all other trigonometric functions.
(5). Show that $\cos 5-\sin 25=\sin 35$.
(6). Derive the expression for $\sin 3 \mathrm{~A}$
(7). Find the equation of the line passing through the point of intersection of the lines

$$
x-y+1=0 \text { and } 2 x+3 y+2=0 \text { and parallel to } x+y-6=0
$$

PART - C

[Maximum marks: 60]
(Answer one full question from each unit. Each question carries 15 marks)

UNIT -I

III. (a). If $\left|\begin{array}{cc}x^{2} & 2 \\ 5 & 1\end{array}\right|=\left|\begin{array}{ll}8 & 3 \\ 6 & 3\end{array}\right|$, find x
(b). If $\mathrm{A}=\left[\begin{array}{ccc}3 & 1 & -1 \\ 0 & 1 & 2\end{array}\right]$, show that $A \cdot A^{T}$ symmetric.
(c). Solve the system of equations by finding the inverse of the coefficient matrix

$$
\begin{equation*}
x-y+z=4,2 x+y-3 z=0, x+y+z=2 \tag{5}
\end{equation*}
$$

OR

IV. (a). Find the values of a, b, c that satisfy the matrix relationship.

$$
\left(\begin{array}{cc}
a+3 & 3 a-2 b \tag{5}\\
3 a-c & a+b+c
\end{array}\right)=\left(\begin{array}{cc}
2 & -7+2 b \\
b+4 & 8 a
\end{array}\right)
$$

(b). If $\left|\begin{array}{ccc}2 & 4 & x \\ 3 & -1 & 2 \\ 1 & 1 & 2\end{array}\right|=\left|\begin{array}{cc}4 & x \\ 3 & 1\end{array}\right|$ find x
(c). If $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right)$ and $B=\left(\begin{array}{rr}3 & 1 \\ 6 & -5\end{array}\right)$ show that $(A+B)^{T}=A^{T}+B^{T}$

UNIT-II

V. (a). Expand $\left(x+\frac{1}{x}\right)^{6}$ binomially.
(b). Prove that $\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta-1}+\frac{\operatorname{cosec} \theta}{\operatorname{cosec} \theta+1}=2 \sec ^{2} \theta$
(c). Evaluate $4 \sin ^{3} \frac{\pi}{3}-3 \cos \frac{\pi}{6}$

OR

VI. (a). Find the term independent of x in the expansion of $\left(x^{2}-\frac{1}{x}\right)^{9}$
(b). Prove that $\sec ^{2} x+\operatorname{cosec}^{2} x=\sec ^{2} x \cdot \operatorname{cosec}^{2} x$
(c). Prove that $\frac{\tan 45-\tan 30}{1+\tan 45 \cdot \tan 30}=2-\sqrt{ } 3$

UNIT-III

VII. (a). If $\tan \mathrm{A}=\frac{3}{4}, \tan \mathrm{~B}=\frac{5}{12}$, A and B are acute angles, find $\tan (\mathrm{A}-\mathrm{B})$
(b). Prove that $\cos 20 \cdot \cos 40 \cdot \cos 80=\frac{1}{8}$
(c). If $\sin \mathrm{A}=0.6, \mathrm{~A}$ is acute, find $\sin 2 \mathrm{~A}$

OR

VIII. (a). Prove that $\frac{\sin 4 A+\sin 2 A}{\cos 4 A+\cos 2 A}=\tan 3 \mathrm{~A}$
(b). Prove that $\cos 4 \theta=1-8 \sin ^{2} \theta \cos ^{2} \theta$
(c). Show that $a(b \cos C-c \cos B)=b^{2}-c^{2}$

UNIT-IV

IX. (a). Solve $\triangle A B C$, given $a=4 c m, b=5 \mathrm{~cm}$ and $c=2 \mathrm{~cm}$
(b). Write down the equation of a line having x intercept 4 and passing through $(3,1)$
(c). A straight line is inclined at an angle 45° with the X axis and it passes through the point (4, -5), find its equation.

OR

X. (a). Solve $\triangle A B C$, given $a=5 \mathrm{~cm}, c=8 \mathrm{~cm}$ and $B=30^{\circ}$
(b). Show that the straight lines $4 x+2 y-10=0$ and $2 x-4 y+15=0$ are perpendicular to each other.
(c). Find the angle between the lines $2 x-y+3=0$ and $x-3 y+4=0$

