TED (10)	1002
(Revision	-2010)

N20-R01427

Reg.No	
Signatura	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER-2020

TECHNICAL MATHEMATICS-I

[Maximum marks: 100] (Time: 3 Hours)

$$PART - A$$

[Maximum marks: 10]

(Answer all questions. Each question carries 2 marks)

I. (1). If
$$A = \begin{pmatrix} 2 & 3 \\ -1 & 2 \end{pmatrix}$$
 and $B = \begin{pmatrix} 1 & 4 \\ 2 & 3 \end{pmatrix}$ find $2A + B$

- (2). Evaluate $\begin{bmatrix} 4 & -2 \\ 2 & 3 \end{bmatrix}$
- (3). In how many ways 4 athletes can be chosen out of 10.
- (4). State the identity for sin (A+B) and cos (A-B)
- (5). Find the slope of the line determined by the pairs of points (5, -2) and (6, 5).

 $(5 \times 2 = 10)$

PART - B

[Maximum marks: 30]

(Answer any *five* of the following questions. Each question carries 6 marks)

II. (1). If
$$A = \begin{pmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{pmatrix}$$
, show that $A^2 - 4A - 5I = 0$

(2). Solve using determinants.

$$3x + y - z = 3$$
, $-x + y + z = 1$, $x + y + z = 3$

- (3). Find the middle terms of $\left(x^2 + \frac{2}{x}\right)^7$
- (4). If $\sin \theta = \frac{3}{5}$, θ lies in second quadrant. Find all other trigonometric functions.
- (5). Show that $\cos 5 \sin 25 = \sin 35$.
- (6). Derive the expression for sin 3 A
- (7). Find the equation of the line passing through the point of intersection of the lines

$$x-y+1=0$$
 and $2x+3y+2=0$ and parallel to $x+y-6=0$ (5 x 6= 30)

PART - C

[Maximum marks: 60]

(Answer one full question from each unit. Each question carries 15 marks)

UNIT -I

III. (a). If
$$\begin{vmatrix} x^2 & 2 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 8 & 3 \\ 6 & 3 \end{vmatrix}$$
, find x (5)

(b). If
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 0 & 1 & 2 \end{bmatrix}$$
, show that $A \cdot A^T$ symmetric. (5)

(c). Solve the system of equations by finding the inverse of the coefficient matrix

$$x-y+z=4$$
, $2x+y-3z=0$, $x+y+z=2$ (5)

OR

IV. (a). Find the values of a, b, c that satisfy the matrix relationship.

(b). If
$$\begin{vmatrix} 2 & 4 & x \\ 3 & -1 & 2 \\ 1 & 1 & 2 \end{vmatrix} = \begin{vmatrix} 4 & x \\ 3 & 1 \end{vmatrix}$$
 find x (5)

(c). If
$$A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 1 \\ 6 & -5 \end{bmatrix}$ show that $(A + B)^T = A^T + B^T$ (5)

UNIT-II

V. (a). Expand
$$\left(x + \frac{1}{x}\right)^6$$
 binomially. (5)

(b). Prove that
$$\frac{cosec \theta}{cosec \theta - 1} + \frac{cosec \theta}{cosec \theta + 1} = 2sec^2 \theta$$
 (5)

(c). Evaluate
$$4 \sin^3 \frac{\pi}{3} - 3\cos \frac{\pi}{6}$$
 (5)

OR

VI. (a). Find the term independent of x in the expansion of
$$\left(x^2 - \frac{1}{x}\right)^9$$
 (5)

(b). Prove that
$$\sec^2 x + \csc^2 x = \sec^2 x \cdot \csc^2 x$$
 (5)

(c). Prove that
$$\frac{\tan 45 - \tan 30}{1 + \tan 45 \cdot \tan 30} = 2 - \sqrt{3}$$
 (5)

UNIT-III

VII. (a). If $\tan A = \frac{3}{4}$, $\tan B = \frac{5}{12}$, A and B are acute angles, find $\tan (A-B)$	
(b). Prove that $\cos 20.\cos 40.\cos 80 = \frac{1}{8}$	(5)
(c). If $\sin A = 0.6$, A is acute, find $\sin 2 A$	
OR	
VIII. (a). Prove that $\frac{\sin 4 A + \sin 2 A}{\cos 4 A + \cos 2 A} = \tan 3 A$	(5)
(b). Prove that $\cos 4 \theta = 1 - 8 \sin^2 \theta \cos^2 \theta$	(5)
(c). Show that $a(b \cos C - c \cos B) = b^2 - c^2$	(5)

UNIT-IV

(5)

- IX. (a). Solve \triangle ABC, given $\alpha = 4$ cm, b = 5 cm and c = 2 cm (5)
 - (b). Write down the equation of a line having x intercept 4 and passing through (3, 1) (5)
 - (c). A straight line is inclined at an angle 45° with the X axis and it passes through the point (4, -5), find its equation. (5)

OR

- X. (a). Solve $\triangle ABC$, given $\alpha = 5$ cm, c = 8 cm and $B = 30^{\circ}$ (5)
 - (b). Show that the straight lines 4x + 2y 10 = 0 and 2x 4y + 15 = 0 are perpendicular to each other. (5)
 - (c). Find the angle between the lines 2x y + 3 = 0 and x 3y + 4 = 0(5)
