2110220174

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2024

STRENGTH OF MATERIALS

[Maximum Marks:75]

[Time: 3 Hours]

PART - A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' marks.

(9 x 1 = 9 Marks)

Module Outcome Cognitive level

1	The ability of a material to resist abrasion, scratching or	M1.01	R
	indentation is known as		
2	The relation between Young's modulus of elasticity (E), modulus	M1.02	R
	of rigidity(G) and Poisson's ratio (μ) is		
3	The unit of coefficient of thermal expansion is	M1.04	R
4	The algebraic sum of the forces acting to the right or left of a beam	M2.02	R
	section is known as		
5	The relation between bending moment (M) and shear force (F) is	M2.02	U
	given by		
6	Slenderness ratio of a column of length 'l' and diameter'd' is	M3.05	R
	given by		
7	Euler's equation for finding buckling load is not suitable for	M3.05	U
	columns.		
8	Spring index for a spring with mean coil diameter 'D' and spring	M4.02	R
	wire diameter 'd' is given by		
9	Hoop stress in a thin cylindrical shell subjected to internal pressure	M4.03	U
	is times longitudinal stress.		

PART - B

II. Answer *any eight* questions from the following. Each question carries 'Three' marks.

$(8 \times 3 = 24 \text{ Marks})$

Module Outcome Cognitive level

1	Differentiate between malleability and ductility.	M1.01	U
2	Define the term factor of safety. Explain its importance.	M1.02	U
3	State Hooke's law and write the equation.	M1.01	R
4	Define the following:	M1.01	R
	i) Young's Modulus ii) Modulus of rigidity iii) Bulk modulus		
5	Draw the shear force and bending moment diagram of a beam of	M2.03	U
	span 'l' subjected to point load at its midpoint of the span.		
6	Draw the shear force and bending moment diagrams for a simply	M2.03	U
	supported beam carrying uniformly distributed load of 'w' per		
	unit length over the entire span.		
7	Define buckling load of columns. Write the Euler's formula for	M3.05	R
	buckling load.		
8	Define the term polar moment of inertia. Write the expression for	M4.01	R

	polar moment of inertia for a hollow circular shaft of external diameter 'D' and internal diameter'd'.		
9	Explain the following terms of a helical spring:	M4.02	R
	i) Solid length ii) Free length iii) Spring stiffness		
10	A 1000 mm diameter pipe contains a fluid at a pressure of	M4.03	Α
	2 N/mm^2 If the safe tensile stress is 100 N/mm^2 . Find the pipe		
	thickness.		

PART - C

Answer all the questions from the following. Each question carries 'seven' marks.

	(6	x 7 = 42	Marks)
	Modu	le Outcome Co	ognitive level
III.	Draw the stress-strain diagram for mild steel under tension and mark the important points in it.	M1.02	U
	OR		
W	A red 200 cm long and of diameter 3 cm is subjected to an avial	M1 05	٨
1 .	A fou 200 cm long and of diameter 5 cm is subjected to an axial 10^{5}	111.05	л
	pull of 50 kN. If the Young's modulus of the rod material is 2×10^{-10}		
	N/mm ⁻ , determine:		
	i) Stress ii) Strain iii) Elongation of the rod		
V.	Draw the shear force and bending moment diagram for a	M2.03	U
	simply supported beam of length 9m and carrying a uniformly		
	distributed load of 10kN/m for a distance of 6m from the left		
	end.		
	OR		
VL	Explain the different types of loads in beams with the help of	M2.01	U
, 1.	skatches	1012.01	Ŭ
VII		M2 02	A
V 11.	Calculate the deflection at the free end of a cantilever beam of	M3.03	A
	length 6m carrying a uniformly distributed load of 15kN/m. Given		
	$I = 95 \times 10^{7} \text{mm}^{4}$ and $E = 2 \times 10^{5} \text{ N/mm}^{2}$.		
	OR	M3.05	U
VIII.	Explain the important end conditions for a column with figures.		
IX.	Determine the maximum bending stress induced in a pipe of	M3.03	А
	external diameter 60mm and internal diameter 40mm subjected		
	to a point load of 100N at its center. The length of the nine is 5		
	m and is supported at its ends		
v	Explain the term section modulus. Determine the section modulus	M2 02	TT
Λ.	Explain the term section modulus. Determine the section modulus	WI5.05	U
371		N 4 0 1	
XI	Compare the weights of solids shaft and hollow shaft of same	M4.01	А
	material and lengths and subjected to same torque. The inside		
	diameter of the hollow shaft is 2/3 of its outside diameter and the		
	maximum shear stress developed in each shaft is same.		
	OR		
	A cylinder pipe of diameter 2m and thickness 2 cm is subjected to		
XII.	an internal fluid pressure of 1.5N/mm ² . Determine the		
	longitudinal and circumferential stress developed in the pipe	M4.03	А
	material.		
XIII	$T \tau G\theta$	M4 01	IJ
71111.	Derive the torsion equation : $\frac{1}{l} = \frac{1}{R} = \frac{1}{l}$	101-101	U
VW	OR		
ЛIV.	Explain the classification of springs with suitable figures.	M4 02	TT
	1 1 0	IVI4.02	U
