TED (15/19) - 1002 (REVISION-2015/19)

N24-8815

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2024

ENGINEERING MATHEMATICS I

(Maximum Marks:100)

PART - A

(Maximum Marks : 10)

I. Answer **all** the questions. Each question carries 2 marks.

- 1. Evaluate $\lim_{x\to 2} \frac{x\sqrt{x-2\sqrt{2}}}{x-2}$
- 2. Prove that $(Sin A + Cos A)^2 = 1+2 Sin A Cos A$.
- 3. Find the rate of change of volume of a cube w.r.t the side x.
- 4. Find the second derivative $\sin x \cdot \cos x$.
- 5. If $\tan A = 0.38$, find $\tan 2A$.

PART - B

(Maximum Marks: 30)

- II Answer *any five* questions from the following. Each question carries 6 marks.
 - 1. Derivative of $\cos x$ w.r.t x using first principle.
 - 2. A particle moves such that the displacement from a fixed-point O is given by $S=a.e^{2t} + b.e^{-2t}$ where a and b are constant. Prove that the acceleration varies as its displacement.
 - 3. The deflection of a beam is given by $y=2x^3-9x^2+12x$. find the maximum deflection.
 - 4. Express $4\cos x + 3\sin x$ in the form $R\sin(x + a)$.
 - 5. Prove that $\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta = 4\cos \theta \cdot \cos 2\theta \cdot \sin 4\theta$.
 - 6. Prove that $R(a^2+b^2+c^2)=abc$ (cot A + cot B + cot C)
 - 7. Prove that (i) $\sin 78^{\circ} \sin 18^{\circ} + \cos 132^{\circ} = 0$

(ii)
$$\frac{\sin A - \sin B}{\cos A + \cos B} = \tan \frac{A - B}{2}$$
 (5 x 6 = 30)

(Time: 3 Hours)

Marks

 $(5 \times 2 = 10)$

PART - C

(Maximum Marks: 60)

(Answer one full question from each unit. Each full question carries 15 marks.)

UNIT - I

III (a) Prove that
$$\frac{\cos A - \sin A}{\cos A + \sin A} = \tan(45 - A)$$
 (5)
(b) Find the value of tan 5 without using tables and show that $\tan 75 + \cot 75 = 4$ (5)
(c) If $\tan A = -\frac{3}{4}$, $\sin B = \frac{5}{13}$ (A lies in fourth quadrant and B lies in second

quadrant)

OR

IV (a) Prove that $\sin 240.\cos 330 - \cos 120$. $\sin 210 = -1$.	(5)
--	-----

(b) Prove that
$$(\cot A-1)^2 + (\cot A+1)^2 = 2 \operatorname{cosec}^2 A.$$
 (5)

(5)

(c) Prove that
$$\frac{1+\sin\theta}{\cos\theta} + \frac{\cos\theta}{1+\sin\theta} = 2\sec\theta.$$
 (5)

$\mathbf{UNIT} - \mathbf{II}$

V (a) Prove that
$$\frac{\sin A + \sin 3A + \sin 5A}{\cos A + \cos 5A} = \tan 3A$$
 (5)

- (b) Prove that $2(bccosA+cacosB+abcosC) = a^2+b^2+c^2$ (5)
- (c) Solve triangle ABC given a=2 cm, b=3 cm, c=4 cm (5)

OR

VI (a) Prove that
$$\sin 10.\sin 50.\sin 70 = \frac{1}{8}$$
. (5)

(b) Solve triangle ABC b= 5cm, c = 8 cm, $A = 30^{\circ}$. (5)

(c) Prove that
$$\frac{\sin 3A}{\sin A} + \frac{\cos 3A}{\cos A} = 4\cos 2A.$$
 (5)

UNIT – III

VII (a) If
$$x = \theta + \sin \theta$$
, $y = 1 - \cos \theta$, then prove that $\frac{dy}{dx} = \tan \frac{\theta}{2}$ (5)
(b) If $y = a \cos nx + b \sin nx$, show that $y'' + n^2y = 0$ (5)

(c) Find the derivative of
$$\frac{x+\sqrt{x}}{1+\sqrt{x}}$$
. (5)

OR

- VIII (a) Find $\lim_{x \to \pi/2} \frac{\cos x}{\frac{\pi}{2} x}$ (5)
 - (b) Find the derivative of $\frac{\cos 3x}{e^{3x}}$ (5)

(c) Find the derivative of
$$x^2+y^2+2gx+2fy+c=0.$$
 (5)

$\mathbf{UNIT} - \mathbf{IV}$

IX	(a) Prove that the rectangle of fixed perimeter has its maximum area when it	
	becomes a square.	(5)
	(b) Find the turning point of x^2-3x^2-9x+5	(5)
	(c) A spherical balloon is inflated with air such that its volume increases at the	
	rate of 10 c.c/s. Find the rate at which curved surface is increasing when its	
	radius is 15 cm.	(5)
	OR	
X	(a) A stone is dropped in to still water, the radius of the outermost ripple then	
	found Increases at the rate of 10 cm/s. How fast is the area increasing when	
	the radius is 24cm.	(5)
	(b) Find the equation to the tangent and normal to the curve y=cos x at $x = \pi/6$.	(5)
	(c) If S denotes the displacement of a particle at a time t sec. and $S = t^3-6t^2+8t-4$.	
	Find the time when the acceleration is 12 cm/sec^2 .	(5)
