TED (15/19)3133
(Revision - 2015/19)

A24 - 8856

Reg. No	 				
Signature	 	 	 		

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2024

DIGITAL COMPUTER PRINCIPLES

[Maximum Marks: 100] [Time: 3 Hours]

PART-A

[Maximum Marks: 10]

- I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)
 - 1. List any two number systems.
 - 2. Draw the symbol of XOR gate.
 - 3. Define don't care condition.
 - 4. Compare latch and flipflop.
 - 5. Define DAC. $(5 \times 2 = 10)$

PART-B

[Maximum Marks: **30**]

- II. (Answer *any five* of the following questions. Each question carries 6 marks)
 - 1. Convert the following.
 - (i) 1101 to gray code
 - (ii) 0011 to binary code
 - 2. Explain BCD codes.
 - 3. Map the expression $F(A,B,C)=\Sigma(1,3,6,7)$ using KMap.
 - 4. Explain 1-bit magnitude comparator with logic circuit.
 - 5. Distinguish between ring counter and johnson counter.
 - 6. Explain two dimensional decoder.
 - 7. Write short note on Read only memory.

 $(5 \times 6 = 30)$

PART-C

[Maximum Marks: **60**]

(Answer *one* full question from each Unit. Each full question carries 15 marks)

UNIT – I

- III. a. Convert the following
 - (i) (237) ₁₆ to Octal
 - (ii) $(163.875)_{10}$ to Binary
 - (iii) $(11011.101)_2$ to Decimal. (9)
 - b. Simplify the boolean expression AB(A+B)(B+B). (6)

OR

IV.	a. Explain any six laws or theorems in boolean algebra.	(9)
	b. Explain the basic gates with truth table.	(6)
	$\mathbf{UNIT} - \mathbf{II}$	
V.	a. Design half adder and draw the logic circuit.	(8)
	b. Reduce the expression using Kmap, $F(A,B,C,D)=\Sigma(0,1,4,5,13)+d(7,8,9,12,15)$	(7)
	OR	
VI.	a. Explain binary multiplier with logic diagram.	(8)
	b. Write short note on SOP and POS forms.	(7)
	UNIT- III	
VII.	a. Explain the working of SR flipflop with truth table and diagram.	(8)
	b. Explain the working of 3-bit johnson counter.	(7)
	OR	
VIII.	a. Explain the working of JK flipflop with truth table and diagram.	(8)
	b. Explain the working of SISO shift register.	(7)
	UNIT - IV	
IX.	a. Explain the working of programmable logic array with example.	(10)
	b. Write notes on Error correcting codes.	(5)
	OR	
X.	a. Explain any four specifications of DAC.	(8)
	b. Explain the counter type ADC with diagram.	(7)
