TED (15/19) – 3043 (Revision – 2015/19)

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL – 2024

ELECTRICAL TECHNOLOGY

[Maximum Marks : 100]

[Time : 3 hours]

PART – A (Maximum Marks : 10)

Marks

(5x6=30)

I. Answer all questions in one or two sentences. Each question carries 2 marks.

- 1. Define impedance.
- 2. State superposition Theorem.
- 3. What are the types of DC generator?
- 4. Write any 2 applications of stepper motor.
- 5. State the general classification of three phase induction motor. (5x2=10)

PART – B

(Maximum Marks : 30)

II. Answer any five of the following questions. Each question carries 6 marks.

- 1. Derive an equation of impedance of an RLC series circuit.
- 2. State and explain Thevenin's theorem.
- 3. Explain the different types of losses in a transformer.
- 4. Types of DC Motor.
- 5. Explain NO-LOAD Characteristics of DC generator.
- 6. Explain the working principle of servomotor.
- 7. Derive EMF equation of an alternator.

PART – C

(Maximum Marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT – I

III.	(a) An inductor coil of 0.2H with a resistance of 20 Ω and capacitance of 160 μ f are				
	connected in series and	fed by a 230v, 50)Hz supply. F	ind the impedance, pf,	
	active power and reactive	ve power.			(7)
	(b) Define (1) RMS value	(2) Amplitude	(3) Phase	(4) Frequency.	(8)

OR

IV. (a) A resistance of 10Ω , an inductance of 20mh and a capacitance of 47μ f are

connected in	series 230 V, 50Hz Supply.		
Determine	(i) the voltage across R,L,C	(ii) Power in watts.	(8)

(7)

(b) With neat sketch explain the working of megger.

UNIT – II

V. (a) In the network shown in figure; find the value of RL and maximum possible power will be transferred to RL. (8)
