TED (15/19)3212	
(Revision – 2015/19)

A24 - 8631

Reg. No	
Signature	

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2024

DIGITAL CIRCUITS

[Maximum Marks: 100] [Time: 3 Hours]

PART-A

[Maximum Marks: 10]

- I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)
 - 1. Define radix of a number system.
 - 2. Define speed power product.
 - 3. Define modulus of counter.
 - 4. Define sensitivity of digital meters.
 - 5. Define the resolution of a DAC.

 $(5 \times 2 = 10)$

PART-B

[Maximum Marks: **30**]

- II. (Answer *any five* of the following questions. Each question carries 6 marks)
 - 1. Perform the subtraction using 2's complement method.

i)
$$10110110 - 11010110$$
 ii) $(BC)_{16} - (AD)_{16}$

- 2. Solve- i) 1101.11 x 101.1 ii) Divide 110101 by 101
- 3. Explain the operation of 4-bit parallel binary adder.
- 4. Describe the operation of a 1-bit magnitude comparator.
- 5. Explain the operation of SR flip-flop.
- 6. Describe a serial-in- parallel-out shift register.
- 7. Compare RAM and ROM.

 $(5 \times 6 = 30)$

PART-C

[Maximum Marks: 60]

(Answer *one* full question from each Unit. Each full question carries **15** marks)

UNIT – I

III. a. Convert the following.

i)
$$(110110111.01111)_2 = ()_{16}$$
 ii) $(2EB7)_{16} = ()_{10}$

iii)
$$(2035)_8 = ()_{16}$$
 I v) $(205.5)_{10} = ()_2$ (8)

b. State and prove Demorgan's theorems.

(7)

OR

IV.	a. Minimize the expression $f=\Sigma$ m(0,1,4,5,6,7,11,15)+d(10,14) using K-map and					
	implement them in universal logic.	(9)				
	b. Convert i) 11011010 to GRAY code ii) 10101101 to BINARY iii) (2314) ₁₀ to XS-3 code.	(6)				
	UNIT – II					
V.	a. Explain the operation of TTL-NAND gate.	(8)				
	b. Define a Half adder .Design a half adder and implement using NAND gate only.	(7)				
	OR					
VI.	a. Describe the operation of Decimal to BCD encoder with logic circuit.	(8)				
	b. Explain a 1:4-Demultiplexer with diagram.	(7)				
	UNIT- III					
VII.	a. Explain the operation of Master-Slave JK flip-flop.	(8)				
	b. Discuss a 4-bit Ring counter with timing diagram.	(7)				
OR						
VIII.	a. Design and implement a Decade asynchronous counter.	(9)				
	b. List the applications of Flip-Flops.	(6)				
	UNIT - IV					
IX.	a. Discuss about Successive Approximation type ADC.	(8)				
	b. Explain briefly about various types of ROM.	(7)				
	OR					
X.	a. Explain the operation of R-2R ladder type DAC.	(9)				
	b. List various displays in digital meters and define sensitivity and resolution of digital					
	meters.	(6)				
