\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

ENGINEERING MATHEMATICS - II
[Maximum Marks: 100]
[Time: $\mathbf{3}$ Hours]

PART-A

[Maximum Marks: 10]
I. (Answer all questions in one or two sentences. Each question carries 2 marks)

1. Find length of the vector $3 \hat{\imath}+4 \hat{\jmath}+\hat{k}$.
2. Solve for x if $\left|\begin{array}{cc}x & 12 \\ 3 & x\end{array}\right|=0$.
3. If $\mathrm{A}=\left[\begin{array}{lll}7 & 8 & 9 \\ 4 & 5 & 6\end{array}\right], \mathrm{B}=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 5 & 6\end{array}\right]$ find $5 A-2 B$.
4. Evaluate $\int \sin ^{2} x d x$.
5. Find the order and degree of the differential equation $3 \frac{d^{3} y}{d x^{3}}-6\left(\frac{d y}{d x}\right)^{3}-4 y=0$.

PART-B
[Maximum Marks: 30]
II. (Answer any five of the following questions. Each question carries $\mathbf{6}$ marks)

1. If $\vec{a}=3 \hat{\imath}+2 \hat{\jmath}-2 \hat{k}, \vec{b}=2 \vec{\imath}+3 \hat{\jmath}+\hat{k}$. Calculate $(\vec{a}+\vec{b}) \times(\vec{a}-\vec{b})$.
2. Find term independent of x in the expansion of $\left(x^{3}+\frac{3}{x^{2}}\right)^{15}$.
3. Solve the following system of equation by finding inverse of the coefficient matrix

$$
\begin{gathered}
x+y-z=4 \\
3 x-y+z=4 \\
2 x-7 y+3 z=-6
\end{gathered}
$$

4. Express the matrix $\mathrm{A}=\left[\begin{array}{lll}3 & 4 & 5 \\ 2 & 4 & 3 \\ 3 & 1 & 2\end{array}\right]$, as the sum of symmetric and skew symmetric matrices.
5. Evaluate $\int_{0}^{\frac{\pi}{2}} \sin 2 x \cdot \cos x d x$.
6. Find volume of a sphere of radius ' r ' using integration.
7. Solve $\frac{d y}{d x}+y \tan x=\cos ^{2} x$.

PART-C

[Maximum Marks: 60]
(Answer one full question from each unit. Each full question carries $\mathbf{1 5}$ marks)

UNIT - I

III. a. Find a unit vector perpendicular to the vectors.

$$
\begin{equation*}
\vec{a}=\hat{\imath}-\hat{\jmath}+\hat{k} \text { and } \vec{b}=2 \hat{\imath}+\hat{\jmath}-\hat{k} \tag{5}
\end{equation*}
$$

b. Find moment about the point $\hat{\imath}+2 \hat{\jmath}-\hat{k}$ of a force represented by $\hat{\imath}+2 \hat{\jmath}+\hat{k}$ acting through the point $2 \hat{\imath}+3 \hat{\jmath}+\hat{k}$.
c. Find angle between the vectors $\vec{a}=2 \hat{\imath}+2 \hat{\jmath}-\hat{k}$ and $\vec{b}=6 \hat{\imath}-3 \hat{\jmath}+2 \hat{k}$.

OR

IV. a. A particle is acted on by two forces $4 \hat{\imath}+\hat{\jmath}-3 \hat{k}$ and $3 \hat{\imath}+\hat{\jmath}-\hat{k}$ is displaced from the point $\hat{\imath}+2 \hat{\jmath}+\hat{k}$ to the point $5 \hat{\imath}+4 \hat{\jmath}+\hat{k}$. Find the work done by the forces.
b. Find area of a triangle whose vertices are

$$
\begin{equation*}
A(\hat{\imath}-\hat{k}), B(2 \hat{\imath}+\hat{\jmath}+5 \hat{k}) \text { and } C(\hat{\jmath}+2 \hat{k}) . \tag{5}
\end{equation*}
$$

c. Find middle term of $\left(x^{2}+\frac{2}{x}\right)^{7}$.

UNIT - II

V. a. If $\mathrm{A}=\left[\begin{array}{lll}1 & 2 & 2 \\ 2 & 1 & 2 \\ 2 & 2 & 1\end{array}\right]$, Prove that $A^{2}-4 A-5 I=0$.
b. Solve by determinant method

$$
\begin{align*}
& x+2 y-z=-3 \\
& 3 x+y+z=4 \\
& x-y+2 z=6 \tag{5}
\end{align*}
$$

c. Find the inverse of matrix $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ -1 & 3 & 0 \\ 0 & -2 & 1\end{array}\right]$

OR

VI. a. If $\mathrm{A}=\left[\begin{array}{ll}5 & 3 \\ 2 & 2\end{array}\right], \mathrm{B}=\left[\begin{array}{ll}7 & 5 \\ 4 & 3\end{array}\right] \quad$ Show that $(A B)^{-1}=B^{-1} A^{-1}$.
b. If $A-B=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], A+B=\left[\begin{array}{ll}1 & 1 \\ 3 & 2\end{array}\right]$, Find A and B.
c. If $A=\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 1 & 2 & 0\end{array}\right] ; B=\left[\begin{array}{ccc}1 & -2 & 3 \\ 2 & 3 & -1 \\ -3 & 1 & 2\end{array}\right]$, find $A B$ and $B A$ and prove that $A B \neq B A$

UNIT- III

VII. a. Evaluate $\int x^{2} \sin x d x$.
b. Evaluate $\int \frac{4+5 \sin x}{\cos ^{2} x} d x$.
c. Evaluate $\int_{0}^{\frac{\pi}{4}} \sin x \cdot \sin 3 x . d x$.

OR

VIII. a. Evaluate $\int\left(e^{\tan ^{-1} x}\right)^{2} \cdot \frac{1}{1+x^{2}} d x$.
b. Evaluate $\int_{2}^{3} \frac{x^{2}+1}{x^{3}+3 x} d x$.
c. Evaluate $\int_{0}^{3} x^{2} \log x d x$.

UNIT - IV

IX. a. Find area enclosed between the curves $y=x^{2}$ and $2 x+y-3=0$.
b. Find the volume generated when the portions of the parabola $y^{2}=4 x$ and $x=0$ and $x=2$ revolves about the x-axis.
c. Solve $\frac{d y}{d x}=\frac{x y^{2}+x}{y x^{2}+y}$.

OR

X. a. Find the area bounded by one arch of the curve $y=2 \sin 3 x$ and the X -axis.
b. Find the volume generated by the area under the curve $y^{2}=x^{2}(a-x)$, the X - axis ordinates at $x=0$ and $x=a$ when revolves about $X-$ axis.
c. Solve $x \frac{d y}{d x}+3 y=5 x^{2}$.

