TED (15/19) - 4021 (REVISION-2015/19)

1510230084

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2024

APPLIED MECHANICS & STRENGTH OF MATERIALS

(Maximum Marks:100)

(Time: 3 Hours)

PART - A

(Maximum Mark: 10)

Marks

 $(5 \times 2 = 10)$

- I. Answer **all** the questions in one or two sentences. Each question carries 2 marks.
 - 1. State Hook's law.
 - 2. Define modulus of rigidity.
 - 3. Define friction.
 - 4. Define polar moment of inertia.
 - 5. List the types of springs.

PART - B

(Maximum Mark: 30)

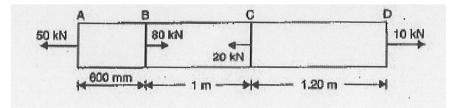
- II Answer *any five* questions from the following. Each question carries 6 marks.
 - 1. Draw stress strain diagram for mild steel under tension and identify the significant points.
 - 2. Explain elastic limit, ultimate stress and working stress.
 - 3. Explain sliding friction, rolling friction and pivot friction.
 - 4. List the different types of riveted joints.
 - 5. Define rivet value, strength and efficiency of riveted joints.
 - 6. Explain the reasons for failure of thin cylindrical shell due to an internal pressure.
 - 7. Define shear force and bending moment.

 $(5 \times 6 = 30)$

P.T.O

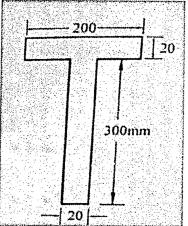
PART – C

(Maximum Mark: 60)


(Answer *one full* question from each unit. Each full question carries 15 marks.)

UNIT - I

III	a) Explain tensile stress, compressive stress and shear stress.	(6)
	b) Find the minimum diameter of a steel wire, which is used to raise a load	
	of 4000 N if the stress in the rod is not to exceed 95 MN/m^2 .	(9)


OR

- IV a) Define volumetric strain and bulk modulus. (6)
 - b) A brass bar having cross sectional area of 1000 mm^2 is subjected to axial forces as in figure. Find the total elongation if $E = 1.05 \times 10^5 \text{N/mm}^2$. (9)

UNIT – II

V	a) State the laws of frictions.	(6)
	b) State and prove parallel axis theorem.	(9)
	OR	
VI	a) Differentiate centroid and centre of gravity.	(6)
	b) Locate the centroid of the T section indicated in the figure.	(9)
	\$10519445191309.504916557939901773965.545551187979999945554455456456456456456456	

UNIT – III

VII	a) With the help of a neat diagram explain the chain riveted joint-and zig-zag					
	riveted joint.	(6)				
	b) Two plates 8mm thick are joined by a single riveted lap joint. The diameter or rivets are 16mm and pitch 50 mm. If $\sigma_t = 120 \text{ N/mm}^2$, $\tau = 90 \text{ N/mm}^2$ and σ_d					
	160 N/mm^2 . Determine the efficiency of joint.	(9)				
	OR					
VIII	a) Which are the assumptions considered for deriving torsion equation in shafts?	(6)				
	b) The shearing stress in a solid shaft is not to exceed 40 N/mm^2 when the torg					
	transmitted is 20000 N-m. Determine the minimum diameter of the shaft.	(9)				
	UNIT – IV					
IX	a) Explain SFD and BMD.	(6)				
	b) Derive the equation for simple bending.	(9)				
OR						
Х	a) With schematic diagram explain different types of loads.	(6)				
	b) The external and internal diameter of a hollow cast iron column are 5 cm and					
	4 cm. If the length of this column is 3m and both of its ends are fixed.					
	Determine crippling load using Rankine's formulae. $\sigma_c = 550 \text{N/mm}^2$,					
	$\alpha = 1/1600.$	(9)				