Reg. No..... Signature

[Time: **3** Hours]

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL – 2024

1510230051

ELECTRONICS INSTRUMENTS AND MEASUREMENTS

[Maximum Marks: **100**]

PART-A

[Maximum Marks: 10]

- I. (Answer *all* questions in one or two sentences. Each question carries 2 marks)
 - 1. Define the term accuracy.
 - 2. Define precision.
 - 3. Define deflection sensitivity of C.R.O.
 - 4. What is a logic analyzer?
 - 5. Define telemetry.

PART-B

[Maximum Marks: 30]

- II. (Answer *any five* of the following questions. Each question carries *6* marks)
 - 1. Explain the working of a moving coil galvanometer.
 - 2. List the differences between ammeter and galvanometer.
 - 3. List the applications of C.RO.
 - 4. Explain different parts of a CRT with a neat sketch.
 - 5. Explain the resistance measurement using Wheatstone bridge with a neat sketch.
 - 6. Explain the principle of Q-meter.
 - 7. Explain a open loop system with the help of block diagram. $(5 \times 6 = 30)$

PART-C

[Maximum Marks: 60]

(Answer one full question from each Unit. Each full question carries 15 marks)

UNIT – I

- III. a. Explain digital frequency meter using block diagram. (9)
 - b. Differentiate between moving coil and moving iron instruments. (6)

(5 x 2 = 10)

 $(3 \times 2 - 10)$

OR

IV.	a. Draw and explain the block diagram of a digital multimeter.	(8)
	b. Differentiate between $3\frac{1}{2}$ and $4\frac{1}{2}$ digit displays in terms of accuracy.	(7)
	UNIT – II	
V.	a. Explain the working principle of a thermocouple using suitable figure.	(7)
	b. Explain the working of LVDT with a neat diagram.	(8)
	OR	
VI.	a. Draw and explain the block diagram of a DSO.	(8)
	b. Explain active and passive transducers.	(7)
	UNIT- III	
VII.	a. Draw and explain the block diagram of a spectrum analyzer.	(8)
	b. Explain inductance measurement using Hay's bridge with a suitable figure.	(7)
	OR	
VIII.	a. List the applications of spectrum analyzer.	(6)
	b. Draw and explain the block diagram of a function generator.	(9)
	UNIT - IV	
IX.	a. Explain the working of potentiometer type recorder using figure.	(8)
	b. Draw and explain the block diagram of a basic instrumentation system.	(7)
	OR	
X.	a. Draw and explain the block diagram of digital DAS.	(8)
	b. Explain the working of XY recorder using figure.	(7)
