TED (15/19) 5023 (Revision-2015/19)

1509238487

Reg.No	••••	•••	•••	•••	••	•••	•••	•••
Signature	••••		•••	•••	••	•••	•••	•••

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

POWER PLANT ENGINEERING

[Maximum marks: 100]

[Time: 3 Hours]

PART – A

Maximum marks: 10

I (Answer *all* the questions in one or two sentences. Each question carries 2 marks)

- 1. Define octane number and cetane number.
- 2. What is an economizer?
- 3. What is bleeding of turbines?
- 4. Define vacuum efficiency of condensers.
- 5. Describe the role of moderators in nuclear power plants. Name two moderators.

 $(5 \times 2 = 10)$

 $(5 \times 6 = 30)$

PART – B

Maximum marks: 30

II (Answer any *five* of the following questions. Each question carries 6 marks)

- 1. List the requirements of a good fuel.
- 2. Why is compounding done in turbines?
- 3. With the help of a neat sketch explain the working of a forced draft tube cooling tower.
- 4. Explain the working of a hydroelectric power plant.
- 5. Compare open and closed cycle gas turbines.
- 6. List the advantages and disadvantages of a nuclear power plant.
- 7. Describe the working of a vertical axis wind mill.

PART – C

Maximum marks: 60

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT –I

- III. (a) Explain the working of a Bomb calorimeter with a neat sketch. (8)
 - (b) Explain velocity compounding in turbines. (7)

		OR	
IV.	(a)	Describe the working of a De-Laval impulse turbine.	(8)
	(b)	Explain the factors affecting combustion.	(7)
V	(a)	UNIT-II A surface condensar is designed to headle 12000kg of steep per hour. The steep	
v .	(a)	A surface condenser is designed to handle 12000kg of steam per nour. The steam	
		enters at 0.075 bar abs. and .95 dryness and the condensate reaves at the	
		corresponding saturation temperature. The pressure is constant infougnout the	
		condenser. Estimate the cooling water flow rate per nour, if the temperature	(0)
		rise of cooling water is 12C. Take specific heat of cooling water as 4.2 KJ/KgK.	(8)
	(b)	Explain Rankine cycle with P-V and T-s diagram.	(7)
		OR	
VI.	(a)	Determine the thermal efficiency of a Carnot cycle operating at a boiler pressure of	
		12 bar abs. and condenser pressure of 0.1 bar abs. Steam is dry and saturated at 12	
		bar.	(8)
	(b)	With the help of a neat sketch, explain the working of a parallel flow jet condenser.	(7)
VII	(a)	UNIT-III Explain the working of a discal newer plant with past skotch	(9)
V 11.	(a)	Explain the working of a dieser power plant with heat sketch.	(8)
	(b)	Describe the working of a constant volume gas turbine.	(/)
		OR	
VIII	.(a)	Explain the working of a Ram jet engine.	(8)
	(b)	Outline the advantages and disadvantages of jet propulsion system.	(7)
		UNIT-IV	
IX.	(a)	Describe the working of a tidal power plant.	(8)
	(b)	Explain the major parts of a typical nuclear reactor.	(7)
		OR	
X.	(a)	Explain the working of a boiling water reactor turbine.	(8)
	(b)	Describe the working of a bio gas digestor with a neat sketch.	(7)
