DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2023

DIGITAL COMPUTER FUNDAMENTALS

PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.
(9) $1=9$ Marks)

		Module outcome Cogitive level	
1.	Write down expansion of ASCII.	M1.04	R
2.	Write down 2's Complement of $(10100111)_{2}$	M1.03	A
3.	Draw logic symbols of universal gates.	M2.03	R
4.	State De-Morgan's Theorems.	M2.01	U
5.	Draw a NOT equivalent circuit using NAND gate.	M2.03	U
6.	Define encoder.	M3.04	R
7.	Write down BCD of $(45)_{10}$	M3.03	U
8.	Write down the truth table of Half Adder.	M3.01	U
9.	Define Registers.	M4.03	R

PART-B
II. Answer any eight questions from the following. Each question carries 'three' marks.

		Nodule Outcome Cognitive le	
1.	Describe the number systems Binary and Octal. Convert (BFA6) ${ }_{16}$ to binary and octal.	M1. 01	U
2.	Explain Weighted and Non-Weighted binary codes with examples.	M1.04	R
3.	Describe Even Parity with examples.	M1.04	U
4.	Describe SOP and POS with examples.	M2.02	R
5.	Write down the truth table for 2 input X-OR gate, with inputs A and B, and write down the boolean function in SOP form as per truth table.	M2.04	A
6.	Expand A' + B' to standard SOP.	M2.02	U
7.	Reduce the expression with the help of Boolean algebra laws $Y=A^{\prime} B^{\prime} C^{\prime}+A^{\prime} B^{\prime}+A B^{\prime} C^{\prime}+A B C^{\prime}$	M2.02	A
8.	Map the expression $\mathrm{f}: \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}+\mathrm{AB}^{\prime} \mathrm{C}+\mathrm{A}^{\prime} \mathrm{BC}^{\prime}+\mathrm{ABC}$ + ABC	M2.05	A
9.	Write down the steps to design and Implement a Combinational circuit.	M3.02	U
10.	Differentiate Synchronous and Asynchronous sequential circuits.	M4.04	R

PART-C

Answer all questions from the following. Each question carries 'seven' marks.
($6 \times 7=42$ Marks)

