TED (21)5043D (Revision – 2021)

2109230103

Reg. No	•
Signature	••

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER – 2023

DIGITAL COMMUNICATION

[Maximum Marks: **75**]

[Time: 3 Hours]

PART-A

I. Answer *all* the following questions in one word or one sentence. Each question carries *'one'* mark.

		$(9 \times 1 = 9)$ Module Outcome	Marks) Cognitive level
1.	Granular noise is observed in modulation.	M1.02	R
2.	Define quantisation error.	M1.02	R
3.	Amplitude shift keying is also known as	M2.01	R
4.	The digital modulation technique that is most affected by noise is	M2.01	U
5.	Channel capacity depends onandand	M3.02	U
6.	Unit of information rate is	M3.01	R
7.	Write the names of any two multiple access technologies.	M4.02	R
8.	OFDM uses subcarriers which areto each other.	M4.03	U
9.	Define PN sequence.	M4.01	R

PART-B

II. Answer any *eight* questions from the following. Each question carries *'three'* marks.

(8 x 3 = 24 Marks)

		Moune Outcome	Cognitive level
1.	Explain companding.	M1.02	U
2.	Justify the statement - "DPCM reduces the bandwidth requirement as compared to PCM".	M1.02	U
3.	Explain the two major limitations of delta modulation.	M1.02	U
4.	Explain Quantisation. State the relation between the number of levels and bits.	M1.02	U
5.	Explain FDM.	M2.02	R
6.	Differentiate between synchronous and asynchronous transmission.	M2.03	U
7.	Compare BFSK and BPSK.	M2.03	U
8.	The probabilities of five possible outcomes of an experiment are given as: $P(x_1) = \frac{1}{2}, P(x_2) = \frac{1}{4}, P(x_3) = \frac{1}{8}, P(x_4) = P(x_5) = \frac{1}{16}$ Find entropy.	M3.03	A
9.	Write down any three applications of TDM and FDM.	M2.02	R
10.	Compare TDMA and FDMA.	M4.02	U

PART-C

Answer all questions from the following. Each question carries 'seven' marks.

		$(6 \times 7 = 42)$	Marks)
III.	Explain DPCM transmitter and receiver with the help of a block	Milling Milling	U
	diagram.		
	OR		
IV.	Explain Adaptive Delta Modulation with neat sketches.	M1.02	U
V.	Explain QPSK with the help of block diagram.	M2.01	U
	OR		
VI.	Explain TDM with the help of neat sketches. List its advantage	M2.02	U
	and disadvantages.		
VII.	State and explain Shannon-Hartley theorem. A system has a	M3.02	А
	bandwidth of 4kHz and a SNR of 28dB at the input to the		
	receiver. Calculate the information carrying capacity of the		
	system.		
	OR		
VIII.	The generator matrix for a (6.3) block code is given below. Find	M3.02	А
	all the code vectors of this code.		
	$[1 \ 0 \ 0 \ 1 \ 1]$		
	0 1 0 1 0 1		
	LO 0 1 1 1 0J		
137		1/2 04	
IX.	Sketch the state transition diagram for a binary convolution $\frac{1}{2}$	M3.04	А
	encoder with $K=1$, $n=2$ and $K=3$.		
x	Explain a convolutional Encoder with the help of a block	M3 04	I
71.	diagram List a few applications of convolutional encoder	W13.04	U
XI.	Explain the concept of CDMA with necessary waveforms. List its	M4.02	U
	advantages and applications.		-
	OR		
XII.	Explain Direct sequence spread spectrum with the help of block	M4.03	U
	diagram and necessary waveforms.		
VIII	Explain CDMA PAKE receiver with the help of block diagram and	M4.01	IT
ЛШ.	necessary waveforms	1014.01	U
	OR		
XIV.	Explain concept and generation of OFDM with neat sketches.	M4.03	U
