\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

ANALOG CIRCUITS FOR INSTRUMENTATION

[Maximum marks: 75]
[Time: 3 Hours]
PART A
I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		(9 x 1 = 9 Marks)	
		Module outcome	$\begin{gathered} \text { Cognitive } \\ \text { level } \\ \hline \end{gathered}$
1	The phase difference between input and output signals in a Common Emitter amplifier is \qquad	M1.05	R
2	The number of depletion layers in a transistor is.........	M1.01	R
3	State the condition for Barkhausen criteria.	M2.02	U
4	A phase shift oscillator has......... RC sections.	M2.03	R
5	The input stage of an OP-amp is usually a...........	M3.01	U
6	Define slew rate.	M3.03	U
7	Draw the circuit of zero crossing detector.	M4.02	U
8	Write the name of any two nonlinear circuits using op-amps.	M4.01	R
9	Define ouput offset voltage in op-amp.	M3.02	U

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.
$(\mathbf{8 x} \mathbf{3}=\mathbf{2 4}$ Marks)

Module outcome	Cognitive level
M1.05	U
M1.06	U
M2.03	U
M2.03	U
M3.01	U
M3.05	U
M3.04	A
M4.03	U
M4.05	U
M3.02	U

PART C
 Answer all questions. Each question carries seven marks

		(6x $7=42$ Marks)	
		Module outcome	Cognitive level
III	With a neat sketch, explain the working of emitter follower circuit. OR	M1.07	U
IV	Define β. Show that $\beta=\frac{\alpha}{1-\alpha}$.	M1.04	U
V	Explain the working of crystal oscillator. OR	M2.03	U
VI	Describe the working of astable multivibrator using transistor.	M2.04	U
VII	Design a non-inverting amplifier with gain five (5).	M3.04	A
VIII	OR With a neat sketch explain about instrumentation amplifier. List its two applications.	M3. 05	A
IX	With neat diagram explain the working of sample and hold circuit. OR	M4.04	U
X	Draw and explain the working of precision half wave rectifier.	M4.01	U
XI	Explain DC load line with necessary diagram.	M1.05	U
XII	OR Explain the working of single stage C.E amplifier circuit with potential divider biasing.	M1.04	U
XIII	Explain the working of Wien bridge oscillator.	M2.03	U
	OR		
XIV	Derive an expression for the gain of positive feedback amplifier.	M2.01	U

