TED (21) 3083

(Revision-2021)

2110220068

Reg.No..... Signature.....

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

ANALOG CIRCUITS FOR INSTRUMENTATION

[Maximum marks: 75]

[Time: 3 Hours]

PART A

I. Answer all the following questions in one word or one sentence. Each question carries 1 mark

		<u>(9 x 1 = 9 Marks)</u>	
		Module outcome	Cognitive level
1	The phase difference between input and output signals in a Common	M1.05	R
	Emitter amplifier is		
2	The number of depletion layers in a transistor is	M1.01	R
3	State the condition for Barkhausen criteria.	M2.02	U
4	A phase shift oscillator has RC sections.	M2.03	R
5	The input stage of an OP-amp is usually a	M3.01	U
6	Define slew rate.	M3.03	U
7	Draw the circuit of zero crossing detector.	M4.02	U
8	Write the name of any two nonlinear circuits using op-amps.	M4.01	R
9	Define ouput offset voltage in op-amp.	M3.02	U

PART B

II. Answer any eight questions from the following. Each question carries 3 marks.

		(8 x 3 = 24 Marks)	
		Module outcome	Cognitive level
1	Draw the input characteristics of common emitter configuration.	M1.05	U
2	Describe the frequency response and bandwidth of transistor amplifier.	M1.06	U
3	Draw the circuit of Colpitt's oscillator.	M2.03	U
4	Draw the circuit of RC phase shift oscillator.	M2.03	U
5	Explain the block diagram of an operational amplifier.	M3.01	U
6	Discuss the operation of Op-amp differentiator.	M3.05	U
7	Explain the working of voltage to current converter.	M3.04	A
8	Draw and explain op-amp clipper circuit.	M4.03	U
9	Draw the circuit of log amplifier and explain.	M4.05	U
10	List out ideal op amp characteristics.	M3.02	U

PART C							
Answer	all q	uestions.	Each c	uestion	carries	seven	marks

	The second de second de seconde de	$(6 \times 7 = 42 \text{ Marks})$		
		Module outcome	Cognitive level	
III	With a neat sketch, explain the working of emitter follower circuit. OR	M1.07	U	
IV	Define β . Show that $\beta = \frac{\alpha}{1-\alpha}$.	M1.04	U	
V	Explain the working of crystal oscillator.	M2.03	U	
VI	Describe the working of astable multivibrator using transistor.	M2.04	U	
VII	Design a non-inverting amplifier with gain five (5).	M3.04	А	
VIII	OR With a neat sketch explain about instrumentation amplifier. List its two applications.	M3.05	А	
IX	With neat diagram explain the working of sample and hold circuit.	M4.04	U	
Х	Draw and explain the working of precision half wave rectifier.	M4.01	U	
XI	Explain DC load line with necessary diagram.	M1.05	U	
XII	OR Explain the working of single stage C.E amplifier circuit with potential divider biasing.	M1.04	U	
XIII	Explain the working of Wien bridge oscillator.	M2.03	U	
	OR			
XIV	Derive an expression for the gain of positive feedback amplifier.	M2.01	U	
