$\qquad$
$\qquad$

## DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, NOVEMBER - 2023

## STRENGTH OF MATERIALS

[Maximum Marks : 75]
[Time : 3 hours]

## PART-A

I. Answer all the following questions in one word or sentence. Each question carries 1 mark.
( $9 \times 1=9$ marks)
Module Cognitive
Outcome level

| 1 | How is strain related stress? | M1.01 | U |
| :---: | :--- | :--- | :---: |
| 2 | Define Poisson's ratio. | M1.02 | R |
| 3 | What is meant by overhanging beam? | M2.01 | R |
| 4 | How is Shear force and Bending moment related? | M2.02 | U |
| 5 | How is load of Uniformly Varying Load calculated? Show <br> with the help of an example. | M2.01 | U |
| 6 | What is the concept of Neutral layer? | M3.01 | U |
| 7 | What is the importance of Slenderness ratio? | M3.05 | U |
| 8 | What is stiffness of a spring? | M4.02 | U |
| 9 | How is Hoop stress important for thin cylinders? | M4.03 | U |

## PART B

II. Answer any Eight questions from the following. Each question carries 3 marks.
(8x3=24 marks)

|  |  | Outcome | level |
| :--- | :--- | :--- | :---: |
| 1 | A square steel rod $20 \mathrm{~mm} \times 20 \mathrm{~mm}$ in section is to carry an axial <br> load (compressive) of 100 kN. Calculate the shortening in a <br> length of $50 \mathrm{~mm} . \quad \mathrm{E}=2.14 \times 10^{8} \mathrm{kN} / \mathrm{m}^{2}$. | M 1.01 | U |
| 2 | The following observations were made during a tensile test on a <br> mild steel specimen 40 mm in diameter and 200 mm long. <br> Elongation with 40 kN load (within limit of proportionality), dl <br> $=0.0304 \mathrm{~mm}:$ <br> Yield load = 161 kN ; Maximum load = 242 kN <br> Length of specimen at fracture $=249 \mathrm{~mm}$ <br> Determine the Percentage elongation of the specimen. | M 1.02 | A |
| 3 | Write about any 3 types of beams. | M 2.01 | R |
| 4 | Draw shear force diagrams for a cantilever beam of span 1.5 m <br> carrying point loads as shown in Fig. | M 2.03 | U |


| 5 | Given is the Shear force diagram of a simply supported beam. <br> Draw the load condition on beam, based shear force diagram. |  |  |
| :--- | :--- | :--- | :--- |
| 6 | A timber beam of span 5 m has moment of Inertia, $\mathrm{I}=1.3 \mathrm{x} 10^{8} \mathrm{~mm}^{4}$. <br> Find the magnitude of the central point load the beam carries if the <br> maximum deflection of the beam is 5 mm. | M 3.04 | U |
| 7 | A steel column is of length 8 m and diameter 500 mm with both <br> ends hinged. Determine the Buckling load by Eulers formula if <br> $\mathrm{I}=3.07 \mathrm{x} 10^{9} \mathrm{~mm}$. | M 3.05 | U |
| 8 | Explain (1) Closed coil helical spring (2) Open coil helical spring. |  |  |

PART C
Answer all questions from the following. Each question carries 7 marks.
( $6 \times 7=42$ marks)

|  |  | Module Outcome | $\underset{\text { level }}{\substack{\text { Cognitive }}}$ |
| :---: | :---: | :---: | :---: |
| III | A steel wire 2 m long and 3 mm in diameter is extended by 0.75 mm when a weight W is suspended from the wire. If the same weight is suspended from a brass wire, 2.5 m long and 2 mm in diameter, it is elongated by 4.64 mm . Determine the modulus of elasticity of brass if that of steel be $2.0 \times 10^{5} \mathrm{~N} / \mathrm{mm}^{2}$. OR | M 1.02 | A |
| IV | A brass bar, having cross-sectional area of $500 \mathrm{~mm}^{2}$ is subjected to axial forces as shown in Fig. Determine the total extension. | M1.03 | A |

\begin{tabular}{|c|c|c|c|}
\hline V

VI \& \begin{tabular}{l}
A concrete column of cross-sectional area $400 \mathrm{~mm} \times 400 \mathrm{~mm}$ is reinforced by four longitudinal 50 mm diameter round steel bars placed at each corner. If the column carries a comprehensive load of 300 kN , determine: (i) Loads carried; <br>
(ii) The compressive stress produced in the concrete and steel bars. Young's modulus of elasticity of steel is 15 times that of concrete. <br>
OR <br>
Draw the S.F. and B.M. diagrams for cantilever loaded as shown in Fig.

 \& 

M1.03 <br>
M2. 03
\end{tabular} \& U

U <br>

\hline | VII |
| :---: |
|  |
|  |
|  |
| VIII | \& | Draw the B.M. and S.F. diagrams for the beam shown in Fig. |
| :--- |
| OR |
| Draw the S.F. and B.M. diagrams for simply supported beam loaded as shown in Fig. | \& | M2.03 |
| :--- |
| M2. 03 | \& | U |
| :---: |
|  | <br>


\hline IX \& | A 250 mm (depth) $\times 150 \mathrm{~mm}$ (width) rectangular beam is subjected to maximum bending moment of 750 kNm . |
| :--- |
| Determine: (i) The maximum stress in the beam. |
| (ii) If the value of E for the beam material is $200 \mathrm{GN} / \mathrm{m}^{2}$, find out the radius of curvature for that portion of the beam where the bending is maximum. |
| (iii) The value of the longitudinal stress at a distance of 65 mm from the top surface of the beam. |
| OR |
| Write the assumptions on Euler's theory of columns. | \& | M3.03 |
| :--- |
| M3. 05 | \& U

R <br>
\hline
\end{tabular}

| XI | Calculate the safe compressive load on a hollow cast iron <br> column (one end rigidly fixed and the other hinged) of 150 mm <br> external diameter, 100 mm internal diameter and 10 m length. <br> Use Euler's formula with a factor of safety of 5, and <br> $\mathrm{E}=95 \mathrm{GN} / \mathrm{m}^{2}$. | M 3.05 | R |
| :---: | :--- | :--- | :--- |
| XII | OR <br> A safety valve of 120 mm diameter is designed to blow off at a <br> gauge pressure of 1 MPa A close coiled helical spring of <br> 160 mm mean diameter is used to hold the valve in position. <br> Determine the diameter of the coils of the spring and the <br> number of turns requires if the initial compression of the spring <br> is 60 mm and maximum value of shear stress is 70 MPa. <br> Take G $=84 \mathrm{GPa}$. | M 4.02 | U |
| XIII | Calculate the minimum wall thickness of the thin cylinder 1 m <br> in diameter if subjected to an internal pressure of $2 \mathrm{~N} / \mathrm{mm}^{2}$. <br> The hoop stress should not exceed $40 \mathrm{~N} / \mathrm{mm}^{2}$ and the <br> longitudinal stress not to exceed $30 \mathrm{~N} / \mathrm{mm}^{2}$. <br> OR | M 4.03 | R |
| XIV | Derivation of the Torsion equation $\mathrm{T} / \mathrm{J}=\mathrm{fs} / \mathrm{R}=\mathrm{G} \theta / \mathrm{L}$ | M 4.01 | R |

