\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2023

SIGNALS AND SYSTEMS

[Maximum Marks:75]
[Time: 3 Hours]
PART - A
I. Answer all the following questions in one word or one sentence. Each question carries 'one' marks.
($9 \times 1=9$ Marks)

Module Outcome Cognitive level			
1	Define energy signal.	M1.03	R
2	Outline the graphical representations of continuous-time unit step function $u(t)$.	M1.02	U
3	Define even signal.	M1.03	R
4	Show the mathematical representation of an elementary discrete time signal.	M1.02	U
5	Define causal system.	M2.01	R
6	Show the difference equation representing a discrete-time system.	M2.01	U
7	The spectrum of a discrete-time aperiodic signal is evaluated using (DTFS/DTFT/CTFS/CTFT). Choose one from the bracket.	M3.04	R
8	If the maximum frequency component of a continuous-time signal is $f_{\text {max }}$, what is the Nyquist rate of sampling for the signal?	M3.03	A
9	Find the inverse Laplace transform of $\frac{1}{s-a}$	M4.04	R

PART - B
II. Answer any eight questions from the following. Each question carries 'Three' marks.

$\text { (} 8 \times 3=24 \text { Marks) }$ Module Outcome Cognitive level			
1	Define causal, anti-causal, and non-causal signals.	M1.03	U
2	State the effect of time scaling on signals.	M1.04	U
3	Show the mathematical and graphical representations of any three elementary continuous time signals.	M1.02	U
4	Differentiate periodic signals and aperiodic signals. Give one example each.	M1.03	U
5	Differentiate discrete-time systems and continuous-time systems.	M2.02	U
6	Define the impulse response of a system. Explain how the causality and the stability of a system are checked from the impulse response of a system.	M2.03	U
7	Identify whether the following systems are invertible or not a) $y(t)=x^{2}(t)$ b) $y(n)=x(n-2)$	M2.04	A
8	State the conditions for the existence of the Fourier transform.	M3.04	R
9	State and explain the final value theorem of Laplace transforms.	M4.03	R
10	List the properties of ROC of Laplace transform.	M4.02	R

PART - C
Answer all the questions from the following. Each question carries 'seven' marks.
($6 \times 7=42$ Marks)

		Module Outcome Cognitive level	
$\begin{aligned} & \text { III } \\ & \text { IV. } \end{aligned}$	Classify signals. Give definitions of each type of signal. OR Plot $\mathrm{x}(\mathrm{n})$, neatly, whose expression is given below and check whether it is causal, anti-causal, or non-causal. $x(n)=r(n-2) \cdot u(n-3)-r(n-6) \cdot u(n-7)$ $(u(n)$ is discrete time unit step signal, $r(n)$ is discrete time unit ramp signal)	$\begin{aligned} & \text { M1.03 } \\ & \text { M1.04 } \end{aligned}$	$\begin{aligned} & \mathrm{U} \\ & \mathrm{~A} \end{aligned}$
V	Check whether the given systems are linear or not. a) $y(t)=x^{2}(t)$ (3 marks) b) $\frac{d y(t)}{d t}+y(t)=x(t) \frac{d x(t)}{d t}$ OR List any 4 properties of a system. Summaries listed properties	M2.04 M2.04	A

\begin{tabular}{|c|c|c|c|}
\hline VII \& \begin{tabular}{l}
State sampling theorem. Illustrate the effect of aliasing on the spectrum of the sampled signal. \\
OR
\end{tabular} \& M3.03 \& U \\
\hline VIII \& State and illustrate the convolution property of the Fourier Transform. \& M3. 04 \& U \\
\hline IX \& \begin{tabular}{l}
Explain the following properties of the Fourier series \\
a) Time scaling \\
(1 marks) \\
b) Time domain convolution \\
(2 marks) \\
c) Frequency shifting \\
(2 marks) \\
d) Time domain differentiation \\
OR \\
Find the Fourier transform of the following signals \\
a) \(e^{-a t} u(t)\) \\
(2 marks) \\
b) \(\delta(\mathrm{t})\) \\
(2 marks) \\
c) \(\operatorname{Cos}\left(\omega_{0} t\right)\)
\end{tabular} \& M3. 01

M3.04 \& U
R

\hline XI \& | Solve to find the inverse Laplace transform of |
| :--- |
| a) $\frac{s-a}{(s-3)(s-2)}$ |
| (3 marks) |
| b) $\frac{s-a}{(s-a)^{2}+b^{2}}$ |
| (2 marks) |
| c) $\frac{1}{s^{2}+2 b s+b^{2}}$ |
| (2 marks) |
| OR |
| Write the Laplace transform of the following signals |
| a) $\cos (b t)$ |
| b) $e^{-a t} u(t)$ |
| c) $\sin (b t)$ |
| d) $\delta(t)$ |
| e) $r(t)$ |
| f) $\mathrm{p}(\mathrm{t})$ |
| g) $u(t)$ |
| (1 mark each) | \& M4.04

M4.01 \& A

R

\hline XIII

XIV \& | Explain the following properties of Laplace transform |
| :--- |
| a) Time scaling |
| (1 marks) |
| b) Linearity (2 marks) |
| c) Time shifting (2 marks) |
| d) Initial value theorem |
| OR |
| Define ROC of the Laplace transform. Summarize the features of ROC of the transfer function in the cases of stable system and causal systems. | \& M4.03

M4.02 \& U
U

\hline
\end{tabular}

