TED (15/19)-2002	
(Revision - 2015/19))

A23 - 03041

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE, APRIL – 2023

ENGINEERING MATHEMATICS-II

(Maximum Marks: 100) (Time: 3 hours)

PART - A

(Maximum Marks: 10)

Marks

- I. Answer all questions in one or two sentences. Each question carries 2 marks.
 - 1. Find the unit vector in the direction of $\vec{a} = 2\hat{i} + 3\hat{j} + \hat{k}$
 - 2. Find the value of x if $\begin{vmatrix} x & 3 \\ 4 & 6 \end{vmatrix} = 0$.
 - 3. Find A + 2B if $A = \begin{bmatrix} 3 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 2 & -1 \\ 2 & 0 & 1 \end{bmatrix}$.
 - 4. Evaluate $\int \cos^2 x \, dx$.

5. Solve
$$\frac{d^2y}{dx^2} = e^x$$
. (5x2=10)

PART-B

(Maximum Marks : 30)

- **II.** Answer any **five** of the following questions. Each question carries 6 marks.
 - 1. If $\vec{a} = 5\hat{i} \hat{j} 3\hat{k}$, $\vec{b} = \hat{i} + 3\hat{j} 5\hat{k}$, Show that $\vec{a} + \vec{b}$ and $\vec{a} \vec{b}$ are perpendicular to each other.
 - 2. Find the middle term(s) in the expansion of $\left(2x + \frac{3}{x}\right)^9$.
 - 3. Solve the following system of equations using Cramer's rule.

$$x + y - z = 4$$

$$3x - v + z = 4$$

$$2x - 7y + 3z = -6$$

- 4. Show that *A*. $adj(A) = |A| \cdot I_3$ if $A = \begin{bmatrix} 3 & -2 & 1 \\ 2 & 1 & 0 \\ 2 & -1 & 3 \end{bmatrix}$
- 5. Find (i) $\int x \log x \, dx$ (ii) $\int \sqrt{x} (1-x) \, dx$
- 6. Find the volume of a sphere of radius 'r' using integration.
- 7. Solve $(x^2 + 1)\frac{dy}{dx} + 2xy = 4x^2$

(5x6=30)

PART - C

(Maximum Marks : 60)

(Answer one full question from each unit. Each full question carries 15 marks)

UNIT-I

- III. (a) Find the value of λ so that the vectors $\vec{a} = 2\hat{i} 3\hat{j} + \hat{k}$ and $\vec{b} = 4\hat{i} 6\hat{j} + \lambda \hat{k}$ are (i) Parallel (ii) Perpendicular. (5)
 - (b) Find the 10^{th} term in the expansion of $\left(x^2 \frac{1}{x^2}\right)^{20}$. (5)
 - (c) Find the area of a triangle whose vertices are $A(\hat{i} \hat{k})$, $B(2\hat{i} + \hat{j} + \widehat{5k})$, and $C(\hat{j} + 2\hat{k})$. (5)

OR

- **IV.** (a) Find the work done by the force $\vec{F} = \hat{\imath} + 2\hat{\jmath} + \hat{k}$ acting on a particle which is displaced from the point with position vector $2\hat{\imath} + \hat{\jmath} + \hat{k}$ to the point with position vector $3\hat{\imath} + 2\hat{\jmath} + 4\hat{k}$.
 - (b) Find the coefficient of x^4 in the expansion of $\left(x^4 \frac{1}{x^3}\right)^{15}$. (5)
 - (c) Find the moment of the force $\vec{F} = 4\hat{i} + \hat{k}$ about the point with position vector $2\hat{i} + \hat{j} \hat{k}$ which is acting through the point with position vector $\hat{i} \hat{j} + 2\hat{k}$ (5)

UNIT-II

- V. (a) If $A = \begin{bmatrix} 2 & 0 & 1 \\ 2 & 1 & 3 \\ 1 & -1 & 0 \end{bmatrix}$, Find $A^2 5A + 6I$. (5)
 - (b) Write the Matrix $A = \begin{bmatrix} 2 & 3 & 4 \\ 5 & 3 & -4 \\ 6 & 8 & 1 \end{bmatrix}$ as a sum of a symmetric matrix and a skew symmetric matrix. (5)
 - (c) Find the values of x if $\begin{vmatrix} 3 & 1 & 9 \\ 2x & 2 & 6 \\ x^2 & 3 & 3 \end{vmatrix} = 0.$ (5)

OR

- VI. (a) If $A = \begin{bmatrix} 1 & 1 & -1 \\ -2 & 3 & -4 \\ 3 & -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -2 & -1 \\ 6 & 12 & 6 \\ 5 & 10 & 5 \end{bmatrix}$, show that AB = 0. (4)
 - (b) Solve the system of equations by finding the inverse of the coefficient matrix.

$$3x + y - z = 3$$

 $-x + y + z = 1$
 $x + y + z = 3$ (6)

(c) Find the value of
$$x$$
 if $\begin{vmatrix} x & 1 & 3 \\ 4 & 1 & -1 \\ 2 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 2 & -1 & 1 \\ 3 & 0 & 1 \\ -1 & 0 & 2 \end{vmatrix}$. (5)

UNIT-III

VII. (a) Evaluate
$$\int \frac{4+5\cos x}{\sin^2 x} dx$$
. (5)

(b) Evaluate
$$\int \frac{1}{x(\log x)^2} dx$$
. (5)

(c) Evaluate
$$\int_0^{\frac{\pi}{2}} \sqrt{1 + \sin 2x} \, dx.$$
 (5)

OR

VIII. (a) Evaluate
$$\int \frac{2x^4}{1+x^{10}} dx$$
. (5)

(b) Evaluate
$$\int tan^{-1} x dx$$
. (5)

(c) Evaluate
$$\int_0^{\sqrt{\pi/2}} x \sin(x^2) dx.$$
 (5)

UNIT-IV

IX. (a) Find the area enclosed by one arch of the curve $y = 2 \sin 3x$ and the X-axis. (5)

(b) Find the volume generated by the rotation of the area bounded by the curve $y = 2x^2 + 1$, the y-axis and the lines y = 8, y = 9 about the y = axis. (5)

(c) Solve
$$\frac{dy}{dx} + y \cot x = \csc x$$
. (5)

OR

X. (a) Find the area enclosed between two parabolas $y^2 = x$ and $x^2 = y$. (5)

(b) Solve
$$\frac{dy}{dx} + \sqrt{\frac{1-y^2}{1-x^2}} = 0.$$
 (5)

(c) Solve
$$x \frac{dy}{dx} = 2y + x^4 - x^2$$
. (5)
