\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE - APRIL - 2023

FUNDAMENTALS OF ELECTRICAL \& ELECTRONICS ENGINEERING

(Maximum Marks : 75)
[Time : 3 hours]

PART-A

I. Answer all the following questions in one word or sentence. Each question carries 1 mark.
(9x1=9 marks)
Module Cognitive
Outcome level

1	State ohm's law.	M 1.01	R
2	Given the equation for instantaneous voltage of an AC circuit as $e(t)=100 \operatorname{Sin}(314 t)$, the maximum value of voltage is.	M 1.04	A
3	The equation for power in a three phase AC circuit is	M2.02	R
4	Commercial unit of electrical energy is	M2.03	R
5	The colour coding on the above resistor are as follows Band 1=Brown Band $2=$ Black Band 3 = Orange, Band 4 = Gold The resistance value is \qquad	M3. 01	A
6	Three capacitors $4,6,7$ micro farads connected in parallel, the effective capacitance is \qquad	M3.02	U
7	The device used to convert AC to DC is called as	M4.01	R
8	Draw the symbol of Zener diode.	M4.02	R
9	Transistor work as an amplifier when it is operated in \qquad region.	M4.03	R

PART B

II. Answer any Eight questions from the following. Each question carries 3 marks.
($8 \times 3=24$)

		Module Outcome	
1	With a neat diagram explain the generation of alternating voltage (in a coil placed in a magnetic field.		
2	Define service connection and state its purpose.	M 1.03	U

PART C

Answer all questions from the following. Each question carries 7 marks.
($6 \times 7=42$ marks)

		$\underset{\substack{\text { Module } \\ \text { Outcome }}}{\substack{\text { Cognitive } \\ \text { level }}}$	
III	Draw an alternating voltage waveform and mark the following parameters on it. Write the Definition for each of them. i. Frequency ii. Maximum value iii. Time period iv. Cycle OR	M 1.04	U
IV	Draw the circuit diagram of the following combinations of three resistors connected in (a) series (b) parallel Give any three comparison between these two circuits.	M1.02	U
V	A resistor of 12Ω is connected in series with a combination of 15Ω and 20Ω resistor in parallel. When voltage of 120 V is applied across the whole circuit, find (a) the equivalent resistance of the combinations. (b) the total current taken from the supply.	M1.02	A

\begin{tabular}{|c|c|c|c|}
\hline VI \& \begin{tabular}{l}
OR \\
An alternating voltage is represented by the following expression. \(V=100 \operatorname{Sin} 628 \mathrm{t}\). \\
Calculate the following \\
(a) Amplitude \\
(b) Frequency \\
(c) Time period \\
(d) instantaneous value of voltage at \(t=3 \mathrm{~s}\).
\end{tabular} \& M1.04 \& A \\
\hline \begin{tabular}{|c}
VII \\
\\
\\
\\
\\
VIII
\end{tabular} \& \begin{tabular}{l}
A residential Building has the following electrical load and appliances are operated as per the load details given. Calculate the following. \\
i. Total Connected Load in kW . \\
ii. Energy Consumption in kWh in one day. \\
iii. Monthly Electricity bill for a month of June at the rate of Rs. 7 per kWh. \\
A circuit consisting of resistance \(70 \Omega\) and inductive reactance \(50 \Omega\) in series is supplied with an AC voltage of 300 V . \\
Determine \\
(a) Impedance of the circuit \\
(b) Power factor of the circuit \\
(c) Active power.
\end{tabular} \& M2.03

M2.02 \& A

A

\hline IX \& | Define inductance of a coil and distinguish between self and mutual inductance. |
| :--- |
| OR |
| Summarize the working of a transformer. Also define the turns ratio of the transformer. | \& M3.03

M3.04 \& U

\hline XI

XII \& | Define capacitance and explain any four specifications of capacitors. |
| :--- |
| OR |
| Explain colour coding of resistors by band system with examples. Specify the tolerance also. | \& \[

$$
\begin{aligned}
& \hline \text { M3.02 } \\
& \text { M3.01 }
\end{aligned}
$$
\] \& U

U

\hline XIII

XIV \& | Explain the working of Full wave bridge rectifier with circuit diagram and waveform. |
| :--- |
| OR |
| Explain the basic operation of transistor as an amplifier with sketches. | \& \[

$$
\begin{aligned}
& \hline \text { M4.01 } \\
& \text { M4.03 }
\end{aligned}
$$
\] \& U

U

\hline
\end{tabular}

