TED (21) 4133
(Revision - 2021)
$\qquad$

## DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, APRIL - 2023

## DATA STRUCTURES

[Maximum Marks: 75]

## PART-A

I. Answer all the following questions in one word or one sentence. Each question carries 'one' mark.
( $9 \times 1=9$ Marks)

|  |  | dudue outcom | dive |
| :---: | :---: | :---: | :---: |
| 1. | Define Data structure. | M1.01 | R |
| 2. | Queue is a linear data structure where data can be inserted at..........end. | M1.04 | R |
| 3. | Name the Queue in which last element is connected to the first element. | M1.05 | R |
| 4. | In a ....... .linked list traversal of data happens in unidirectional. | M2.02 | R |
| 5. | In a..........linked list first and last nodes are connected to form a cycle. | M2.03 | R |
| 6. | Write the inorder traversal of binary search tree with keys 5,7,2,3,8,9,10 | M3.03 | A |
| 7. | Define the terms path and path length of a binarytree. | M3.01 | R |
| 8. | Two or more edges incident on same set of vertices is called. | M4.01 | R |
| 9. | Name a simple undirected graph in which every pair of distinct vertices are connected by unique edge are called. $\qquad$ | M4.02 | R |

## PART-B

II. Answer any eight questions from the following. Each question carries 'three' marks.

| 1. | If the sequence of operations needs to be performed in a queue <br> (a) insert an element 10 <br> (b) insert an element 20 <br> (c) delete an element <br> (d) insert an element 15 <br> (e) insert an element 22 <br> (f) delete an element <br> (g) delete an element <br> (h) delete an element <br> (i) insert an element 27 <br> (j) delete an element <br> Write the sequence of deleted values. | M .04 | A |
| :--- | :--- | :---: | :---: |
| 2. | Write a short note on Dequeue Data structure. | M 1.05 | U |
| 3. | Describe Circular Linked list with a diagram. | M 2.03 | U |
| 4. | Draw a linked list representation of stack. | M 2.04 | U |


| 5. | Define the binary tree terminologies with help of a diagram <br> i) degree of a node (ii) height of a tree | M 3.01 | R |
| :---: | :--- | :--- | :---: |
| 6. | Draw and explain (i) perfect binary tree | M 3.02 | U |
| 7. | Define (i) sub graph (ii) adjacent vertices with the help of diagrams. | M4.01 | R |
| 8. | List different types of graph. | M 4.01 | R |
| 9. | Name the following <br> (i) Basic data structure operation used to print all <br> elements in the data structure. <br> (ii) Write underflow and overflow condition in Queue | M 1.01 | M 1.04 |
|  | M1.03 | R |  |
| 10. | Explain doubly linked list with the help of a diagram. | M 2.03 | U |

## PART-C

Answer all questions. Each question carries 'seven' marks
( $6 \times 7=42$ Marks)

| Module Outcome Cognitive lever |  |  |  |
| :---: | :---: | :---: | :---: |
| III. | Evaluate postfix expression $532 *+4-5+$ using stack. Write pseudo code/algorithm/program for evaluation. <br> OR | M1.03 | A |
| IV. | Convert $2 * 3 /(2-1)+5 * 3$ into postfix using stack.Write pseudo code/algorithm/program for implementing it. | M1.03 | A |
| V. | Describe array representation of circular queue and its operations. | M1.04 | U |
| VI. | OR <br> Explain how we can implement stack using array. | M1.02 | U |
| VII. | Elaborate the singly Linked List operations such as (i) delete an element and (ii) traversal using algorithm. <br> OR | M2.02 | U |
| VIII. | Draw the diagram of different types of linked list. | M2.02 | R |
| IX. | Explain about expression tree and threaded binary tree. <br> OR | M3.04 | U |
| X. | Construct a Binary search tree for the sequence of numbers $\mathbf{1 0 , 1 2 , 5 , 4 , 2 0 , 8 , 7 , 1 5}$ and 13 and how to search an element with proper pseudo code/algorithm. | M3. 03 | A |
| XI. | Describe Depth First search algorithm with an example. <br> OR | M4.04 | U |
| XII. |  | M4.02 | U |
| XIII. | Explain any two types of binary trees. <br> OR | M3.04 | U |
| XIV. | Illustrate with an example the preorder traversal algorithm of binary search tree. | M3.03 | U |

