TED (21)	-4021
(Revision-	- 2021)

A23-2103230224A

Reg.No	 	 	 					 	
Signature.	 	 	 	 					

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE – APRIL - 2023

THERMAL ENGINEERING

[Instructions: 1. Use of steam table and mollier chart is allowed.

2. Scientific calculator (up to 100Ms) is allowed.]

(Maximum Marks : 75) [Time : 3 hours]

PART-A

I. Answer **all** the following questions in one word or sentence. Each question carries 1 mark.

(9x1=9 marks)

	Module	Cognitive
	Outcome	level
The expression to find out enthalpy is	M1.02	R
Properties that depend on the mass of the substance is called	M1.02	R
Stochiometric air fuel ratio of petrol engine is	M2.02	R
The cycle which contain two constant volume processes and two	M2.01	R
isentropic processes is		
Specify the range of compression ratio in case of diesel engine.	M2.02	R
The amount of heat added during phase change of water is called	M3.01	R
Specify the name of boiler mounting which is used to drain out	M3.05	R
the water from the boiler periodically.		
Give an example of positive displacement type compressor.	M4.07	R
If temperature difference ΔT_1 is 249 K and temperature	M4.05	A
difference ΔT_2 is 173.5K, find LMTD of heat exchanger.		
	Properties that depend on the mass of the substance is called Stochiometric air fuel ratio of petrol engine is The cycle which contain two constant volume processes and two isentropic processes is Specify the range of compression ratio in case of diesel engine. The amount of heat added during phase change of water is called Specify the name of boiler mounting which is used to drain out the water from the boiler periodically. Give an example of positive displacement type compressor. If temperature difference ΔT₁ is 249 K and temperature	The expression to find out enthalpy is

PART B

II. Answer any Eight questions from the following. Each question carries 3 marks.

(8x3=24) Module Co

Outcome

Cognitive

level

Make a statement for the following laws M1.02R a) Charles's law b) Joule's law c) Avogadro's law What is thermodynamic equilibrium? M1.02 R 3 Draw and mark PV diagram for isothermal process. M1.04 R Explain about Zeroth law of thermodynamics. M1.03 U Draw the PV diagram of Carnot cycle and mark the different R M2.01processes. Define the following tems. 6 M2.06R a) Mechanical efficiency b) specific fuel consumption c) indicated thermal efficiency 7 What is throttling process? R M3.03Draw the principle of fire tube boiler. M3.05R The total area of the glass window pane is 0.5m². Calculate how M4.02Α much heat is conducted per hour through the glass window pane if thickness of the glass is 6 mm, the temperature of the inside is 23°C and of the outside surface is 2°C, thermal conductivity of glass is 1 W/mK. Explain about vane type compressors. M4.07U

PART C
Answer all questions from the following. Each question carries 7 marks.

(6x7=42marks) Module Cognitive

		Module Outcome	Cognitive
III	Draw PV diagram and TS diagram of the following processes a) Isochoric b) Isobaric c) Polytropic OR	M 1.04	R
IV	A system contains 2kg of gas at 37°C is heated in a reversible non-flow constant volume process, till the pressure is doubled.		
	Find the final temperature, work done, heat transferred and the change in internal energy, Take $c_v = 0.72 \text{ kJ/kgK}$	M1.05	A
V	With neat diagram explain the working of a four stroke diesel engine.	M2.02	U
	OR		
VI	The following particulars refer to a 4-cylinder, 4-stroke petrol engine; bore = 65mm Stroke length = 95mm	M2.05	A
	Torque developed = 64 Nm when engine turns 3000 rpm Clearance volume = 63 cm ³ for each cylinder		
	Relative efficiency= 0.5 and		
	Calorific value of petrol = 42000kJ/kg		
	Make calculations for brake mean effective pressure and the		
VII	fuel consumption in kg/hr With the help of PV and TS diagram explain about Carnot cycle	M2.01	U
	OR	W12.U1	
VIII	With neat diagram explain the working of a two stroke petrol		* *
	engine	M2.02	U
IX	Draw a neat diagram of Babcock and Wilcox boiler and mark all parts.	M3.05	U
v	OR	M2 06	TT
X	With the help of a neat diagram explain the principle of reaction steam turbine.	M3.06	U
XI	With neat sketch explain the working of economizer of a boiler. OR	M3.05	U
XII	With neat sketch explain the working of water level indicator of a boiler.	M3.05	U
XIII	With neat line diagram explain about shell and tube type heat exchanger.	M4.05	U
	OR		
XIV	It is desired to cool oil from 120°C to 50°C using a double pipe		
	heat exchanger. The cooling water enters the heat exchanger at	3.64.05	
	20°C and leaves it at 40°C. Calculate the LMTD for	M4.05	A
	(i) a parallel flow heat exchanger, and (ii) for a counter flow heat exchanger.		
