\qquad
\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/MANAGEMENT/ COMMERCIAL PRACTICE - APRIL - 2023
 THERMAL ENGINEERING

[Instructions: 1. Use of steam table and mollier chart is allowed.
2. Scientific calculator (up to 100 Ms) is allowed.]
(Maximum Marks : 75)
[Time : 3 hours]

PART-A

I. Answer all the following questions in one word or sentence. Each question carries 1 mark.

		$(9 \times 1=9 \text { marks })$Module Cognitive	
		Module Outcome	gnitive vel
1	The expression to find out enthalpy is	M1.02	R
2	Properties that depend on the mass of the substance is called	M1.02	R
3	Stochiometric air fuel ratio of petrol engine is	M2.02	R
4	The cycle which contain two constant volume processes and two isentropic processes is \qquad	M2.01	R
5	Specify the range of compression ratio in case of diesel engine.	M2.02	R
6	The amount of heat added during phase change of water is called	M3.01	R
7	Specify the name of boiler mounting which is used to drain out the water from the boiler periodically.	M3.05	R
8	Give an example of positive displacement type compressor.	M4.07	R
9	If temperature difference $\Delta \mathrm{T}_{1}$ is 249 K and temperature difference ΔT_{2} is 173.5 K , find LMTD of heat exchanger.	M4.05	A

PART B

II. Answer any Eight questions from the following. Each question carries 3 marks.
($8 \times 3=24$)
Module Cognitive
Outcome level

1	Make a statement for the following laws a) Charles's law b) Joule's law c) Avogadro's law	M 1.02	R
2	What is thermodynamic equilibrium?	M 1.02	R
3	Draw and mark PV diagram for isothermal process.	M 1.04	R
4	Explain about Zeroth law of thermodynamics.	M 1.03	U
5	Draw the PV diagram of Carnot cycle and mark the different processes.	M 2.01	R
6	Define the following tems. a) Mechanical efficiency b) specific fuel consumption c) indicated thermal efficiency	M 2.06	R
7	What is throttling process?	M 3.03	R
8	Draw the principle of fire tube boiler.	M 3.05	R
9	The total area of the glass window pane is $0.5 \mathrm{~m}^{2}$. Calculate how much heat is conducted per hour through the glass window pane if thickness of the glass is 6 mm, the temperature of the inside is 23 º and of the outside surface is $2^{\circ} \mathrm{C}$, thermal conductivity of glass is 1 W/mK.	M .02	A
10	Explain about vane type compressors.	M 4.07	U

PART C

Answer all questions from the following. Each question carries 7 marks.
($6 \times 7=42 \mathrm{marks}$)

\begin{tabular}{|c|c|c|c|}
\hline \& \& Module Outcome \& \[
\begin{gathered}
\text { Cognitive } \\
\text { level }
\end{gathered}
\] \\
\hline III
IV \& \begin{tabular}{l}
Draw PV diagram and TS diagram of the following processes \\
a) Isochoric \\
b) Isobaric \\
c) Polytropic \\
OR \\
A system contains 2 kg of gas at \(37^{\circ} \mathrm{C}\) is heated in a reversible non-flow constant volume process, till the pressure is doubled. Find the final temperature, work done, heat transferred and the change in internal energy, Take \(\mathrm{c}_{\mathrm{v}}=0.72 \mathrm{~kJ} / \mathrm{kgK}\)
\end{tabular} \& M 1.04
M1.05 \& R

A

\hline V

VI \& | With neat diagram explain the working of a four stroke diesel engine. |
| :--- |
| OR |
| The following particulars refer to a 4-cylinder, 4-stroke petrol engine; bore $=65 \mathrm{~mm}$ |
| Stroke length $\quad=95 \mathrm{~mm}$ |
| Torque developed $=64 \mathrm{Nm}$ when engine turns 3000 rpm |
| Clearance volume $=63 \mathrm{~cm}^{3}$ for each cylinder |
| Relative efficiency $=0.5$ and |
| Calorific value of petrol $=42000 \mathrm{~kJ} / \mathrm{kg}$ |
| Make calculations for brake mean effective pressure and the fuel consumption in $\mathrm{kg} / \mathrm{hr}$ | \& M2.02

M2.05 \& U
A

\hline \[
$$
\begin{aligned}
& \hline \text { VII } \\
& \text { VIII }
\end{aligned}
$$

\] \& | With the help of PV and TS diagram explain about Carnot cycle |
| :--- |
| OR |
| With neat diagram explain the working of a two stroke petrol engine | \& \[

$$
\begin{aligned}
& \hline \text { M2.01 } \\
& \text { M2.02 }
\end{aligned}
$$
\] \& U

U

\hline IX \& | Draw a neat diagram of Babcock and Wilcox boiler and mark all parts. |
| :--- |
| OR |
| With the help of a neat diagram explain the principle of reaction steam turbine. | \& \[

$$
\begin{aligned}
& \text { M3.05 } \\
& \text { M3.06 }
\end{aligned}
$$
\] \& U

U

\hline XI

XII \& | With neat sketch explain the working of economizer of a boiler. |
| :--- |
| OR |
| With neat sketch explain the working of water level indicator of a boiler. | \& M3.05

M3.05 \& U
U

\hline XIII

XIV \& | With neat line diagram explain about shell and tube type heat exchanger. |
| :--- |
| OR |
| It is desired to cool oil from $120^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$ using a double pipe heat exchanger. The cooling water enters the heat exchanger at $20^{\circ} \mathrm{C}$ and leaves it at $40^{\circ} \mathrm{C}$. Calculate the LMTD for |
| (i) a parallel flow heat exchanger, and (ii) for a counter flow heat exchanger. | \& \[

$$
\begin{aligned}
& \text { M4.05 } \\
& \text { M4.05 }
\end{aligned}
$$
\] \& U

A

\hline
\end{tabular}

