\qquad

DIPLOMA EXAMINATION IN ENGINEERING/TECHNOLOGY/ MANAGEMENT/COMMERCIAL PRACTICE, NOVEMBER - 2022

 DIGITAL COMPUTER PRINCIPLES

 DIGITAL COMPUTER PRINCIPLES}
[Maximum Marks: 100]
[Time: $\mathbf{3}$ Hours]

PART-A

[Maximum Marks: 10]
I. (Answer all questions in one or two sentences. Each question carries 2 marks)

1. List two universal gates.
2. Define Combinational Logic Circuit.
3. Draw the circuit diagram for a 2 to 1 multiplexer.
4. Write any two applications of flip flops.
5. List any two type of digital to analog converter.

PART-B

[Maximum Marks: 30]
II. (Answer any five of the following questions. Each question carries $\mathbf{6}$ marks)

1. Draw the truth table and logic symbol of NAND and NOR logic gates.
2. Define Minterm and Maxterm with examples.
3. Design and implement a full adder circuit.
4. Simplify using Karnaugh Map F= $\Sigma \mathrm{m}(0,1,3,5,6,9,11,12,13,15)$
5. Show how a JK flip - flop is converted to a T-FF and D-FF.
6. Differentiate between synchronous and asynchronous counters.
7. Explain a Counter type ADC with neat figure.

PART-C
[Maximum Marks: 60]
(Answer one full question from each Unit. Each full question carries $\mathbf{1 5}$ marks)
UNIT - I
III. (a) Define universal property of NAND gate. Implement AND and OR gates using NAND gates alone.
(b) Find: (i) Gray code equivalent of binary 1010 (ii) Binary equivalent of 1010 Gray code.

OR

IV. (a) Draw the symbols and truth tables of EX-OR and EX-NOR gates and explain.
(b) Convert
(i) Octal number 632 to hexadecimal (iii) Decimal 32.46 to binary
(ii) Hexadecimal E0B3 to decimal (iv) Decimal 83 to octal

UNIT - II
V. (a) Distinguish between decoder and demultiplexer with neat figures.
(b) Design a circuit for the following function: $\mathrm{F}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})=\Sigma \mathrm{m}(1,2,3,5,7,9,10,11,13,15)$

OR

VI. (a) State the need of decoders. Design a logic circuit to decode the binary number 1001 for producing HIGH level at the output.
(b) Design and implement a four bit binary to gray code converter.

UNIT- III
VII. (a) With truth table and logic diagram explain the working of a JK flipflop.
(b) Explain the working of a 3 bit asynchronous counter using T Flip Flop with neat diagram. (7)

OR

VIII. (a) Explain the working of a mode-10 ripple counter with diagram.
(b) Explain the working of serial in serial out shift register with diagram.

UNIT - IV
IX. (a) State the DAC Parameters-(offset voltage and Monotonicity, Accuracy and setting time)
(b) Explain a weighted resister type DAC with neat figure.

OR

X. (a) Describe the need of DAC and ADC in digital systems.
(b) What are the difference between RAM and ROM.

